透過您的圖書館登入
IP:3.87.11.93
  • 期刊

鞋底結構設計之避震反彈分析

The Analysis of Footwear Structure for Cushioning & Energy Return

摘要


在運動過程中,鞋底是人體與足部接觸最頻繁的部份,因此鞋底好壞便直接影響到足部的受力,目前鞋底避震之結構設計皆是以「嘗試錯誤」的方式進行,選擇所要用鞋底材料及結構形狀製造成鞋底成品,再測試其避震及反彈能力,此方法必須反覆設計、製造及實驗直到符合要求;過程過於耗損人力物力及時間,且不易達到最佳化之設計,其中鞋底開模的模具費用更是非常龐大,因此影響設計者創新設計之意願,為了能以更經濟有效的方法了解鞋底的效能,本研究以有限元素法作動態的模擬,並配合撞擊實驗去獲得加速度值和反彈高度值,兩者互相比較去驗證有限元素的模擬值。並針對鞋底與足底的接觸面積預測,以了解接觸面積是否與鞋子性能有關。本研究針對三種鞋底結構去建立二度空間的模型,分別為實心梯形圓柱、不同實心圓柱、中空圓柱三種模型,並將撞擊頭依現有尺寸建立出有限元素模型,模擬輸出資料為碰撞加速度、反彈高度、撞擊時間及反彈時間。完成驗證後,便再作接觸面積的測試,即將接觸面積分成100%,75%,60%三個不同模型,以模擬不同接觸面積的效應。其結果就反彈高度而言,以實心梯形圓柱的反彈高度最高達50.9%,且實驗值與電腦模擬值相近。對碰撞加速度而言,則以中空圓柱模型所獲得的值最大。而在時間方面,兩者的撞擊時間相近,但反彈時間相差約0.03秒,而之所以發生反彈時間有稍許差異,其因素可能是模型在撞擊時發生挫屈效應,致使反彈時間延長。在預測接觸面積結果發現,以接觸面積75%的模型所獲得的反彈高度及碰撞加速度值最大,因此建議可就此接觸面積的大小去設計一個實體模型,以進一步了解是否這樣的接觸面積可獲得較佳的反彈高度值及碰撞加速度。

關鍵字

鞋底 有限元素法 避震 反彈

並列摘要


The shoe sole is the most important interface between human foot and ground during ambulation. Therefore, the structural design of insole directly affects the ground reaction force on foot. To date, ”try and error” approach was often used to design the shoe sole. But this approach cannot do most of the analysis before the prototype completed to eliminate the waist of time and work of real laboratory experiment. In order to evaluate the effects of insole more effectively, the finite element method (FEM) was used to construct a dynamic impact model and experimental results were used to validate this model. Consequently, the effects of various contact area of insole were predicted via our model to determine the optimal shoe insole structure. Three different structural design insoles were used to create finite element models including solid trapezoid cylinder, hollow cylinder, and 2-sized solid trapezoid cylinder. The impact acceleration, rebound height, rebound time, and impact time calculated from the FE model were compared with the experimental data. To validate the FEM model, the experimental values of rebound height, impact acceleration, and impact time are similar to the results of FEM simulation. Rebound height of solid trapezoid cylinder model is larger than other models. The hollow cylinder has the largest impact acceleration within these three models. However, the rebound time of FEM is larger than the experimental value about 0.03 second which may be due to the buckling effect of the cylinder shape. In the effect simulation of different contact area, the largest rebound height and the largest impact acceleration could be found both in the results of 75% contact area. According to the results, this study suggested that the rebound height and impact acceleration should be measured from a real experimental model with 75% contact area in the further study.

並列關鍵字

Sole Finite Element Cushioning Energy return

延伸閱讀