透過您的圖書館登入
IP:18.217.4.206
  • 學位論文

仿生人工角膜及高度多孔性人工角膜襯裙與奈米混成太陽能電池元件開發與應用

Fabrication and Application of Hybrid Solar Cells and Artificial Cornea with Superporous Peripheral Based on Biomimetic Hydrogels

指導教授 : 戴子安
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文中包含三部份對不同之高分子聚合物及其應用的相關研究。第一部分是合成設計新穎之poly (2,5-dihexyloxy-p-phenylene) (PPP)和poly (3-butylthiophene) (P3BT)共軛嵌段共聚物,並利用此共軛嵌段共聚物與[6,6] -phenyl C71-butyric acid methyl ester (PC71BM)混合,進行高分子太陽能電池之製作與測量、分析。因為共軛嵌段共聚物不同主鏈部分具有非常強的不混溶性,而且PPP和P3BT嵌段之間的結晶度差異大。所以這種新型材料會自發地自組裝成互穿納米結構,同時迫使PC71BM納米顆粒會優先移動到無定型的PPP結構域中,而比較不會存在於高度結晶的P3BT相。PPP-P3BT/PC71BM太陽能電池的功率轉換效率(PCE)為3.12%而P3BT/PC71BM太陽能電池的效率為3.09%。進一步的研究結果清楚地證明了具有不同主鏈部分的完全共軛嵌段共聚物的優點在於可以產生自組裝結構和可利用其形態控制高分子及PC71BM之相分離行為,從而促進激子解離並改善電荷傳輸的穩定性,可以使高分子太陽能電池具有高性能及高穩定性等優點。 在第二部分,則是利用生物相容性高分子進行仿生人工角膜的開發與應用。Poly (2-hydroxyethyl methacrylate) (PHEMA)、poly (2-hydroxyethyl methacrylate-co-Acrylic acid) (Poly (HEMA-co-AA))以及互穿網絡結構(interpenetrating polymer network,IPN) 的poly (ethylene glycol)/poly (acrylic acid) (PEG / PAA)在本研究中被用來作為人造角膜材料使用。我們進一步建立了一套眼內壓測量系統來觀察使用不同的眼壓計時(Icare Tonometer,Schiøtz眼壓計,非接觸式眼壓計(NCT))不同參數條件的人工角膜所量測到的數據與誤差範圍,目的在可以與真實人眼在量測時的眼壓值進行比較。此外,PEG/PAA水凝膠具有良好的機械性能,水分含量和折射率有望在將來作為臨床用途的生物材料。 在第三部分中,我們利用poly(ethylene glycol) (PEG)以及poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (poloxamer407)合成可交聯的生物相容性大分子單體,以用於開發新穎的多孔性人造角膜裙料。利用 PEGDA 和 P407DA 的前體溶液製備一系列不同比例的P407-PEG水凝膠。同時比較在水中及在二氯甲烷中的solvent induced phase separation (SIPS)之效應。調整P407DA和PEGDA在前體溶液中的比例,可以很容易地改變最後得到的P407-PEG水凝膠的孔隙度和孔徑分佈。高度多孔的角膜襯裙材料可以幫助增加襯裙和角膜基質之間的水、養份和氧氣的交換。我們利用動態力學分析(DMA)和流變儀(rheometer)進行多孔性材料的物理性質分析證實,此研究中所合成之P407-PEG水凝膠的壓縮和剪切儲存模量都符合人眼角膜的強度範圍。進一步將P407-PEG水凝膠植入大鼠大腿8週的結果表明此多孔性材料具有良好的生物相容性。綜合比較各項參數後,我們認為利用二氯甲烷為溶液的P407-PEG水凝膠具有作為人工角膜襯裙材料的高度可行性。

並列摘要


In this dissertation, three studies on novel polymers and their applications are reported. The first part is a new design for the rational design of poly (2,5-dihexyloxy-p-phenylene) (PPP) segments and poly (3-butylthiophene) (P3BT) conjugated block copolymer, which is synthesized and further used as a cooperative long distance ordered carrier transport network based on PC71BM bulk heterojunction (BHJ) hybrid system. The strong immiscibility from different backbone moieties and the large difference in crystallinity between the PPP and P3BT blocks allow this novel material spontaneously self-assemble into interpenetrating nanostructures, while forcing the PC71BM nanoparticles to be preferentially located in the amorphous PPP domain, rather than in the highly crystalline P3BT phase. The power conversion efficiency (PCE) of the PPP-P3BT/PC71BM device is 3.12 % and the homopolymer P3BT/PC71BM counterpart is 3.09 %. The further investigating results clearly demonstrate the advantages of fully conjugated block copolymers with different backbone moieties for generating preferential interface energy gradients and morphological sequences, thereby promoting a strong improvement in exciton dissociation and charge transport and enhance thermal stability, resulting in organic solar cell devices with the best performance and excellent long-term stability. In the second part, several artificial model eyes developed to simulate the biomechanical response of human eyes with different material properties It is important to use IOP measurements to diagnose human eye health such as glaucoma. At present, the main method of estimating intraocular pressure is to apply pressure to the cornea and detect its deformation or force feedback. Poly(2-hydroxyethyl methacrylate) (PHEMA), poly(2-hydroxyethyl methacrylate-co-acrylic acid) (poly(HEMA-co-AA)) and the interpenetrating polymer networks (IPN) of Poly(ethylene glycol)/Poly(acrylic acid) (PEG/PAA) hydrogels were used as artificial corneal materials in this study. At the same time we tested the different corneal parameters for different intraocular pressure measurement instruments (Icare Tonometer, Schiøtz tonometer, Non-contact Tonometer(NCT)) in the measurement of intraocular pressure when the error range. Polyvinylchloride (PVC) thin film was induced to simulate the Bowman’s layer in actual human eye structure of cornea to perform the real situation of the human eye and reflect the IOP using Icare tonometer. In addition, PEG/PAA hydrogels have good mechanical properties, and water content and refractive index have the potential for future use as a biomaterial for clinical use. In the third part, poly(ethylene glycol) (PEG) and poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (poloxamer407) crosslinked biocompatible macromers are synthesized for developing a novel porous artificial cornea skirt material. A series of P407-PEG hydrogels is produced from poly(ethylene glycol) diacrylate (PEGDA) and poloxamer407 diacrylate (P407DA) precursor solutions. Water and dichloromethane is used to induce polymer/solvent phase separation. The porosity and pore size distribution of P407-PEG hydrogels could be easily changed by tuning the ratio of P407DA and PEGDA in precursor solution. Highly porous cornea skirt materials can assist diffusion of water, nutrition and oxygen between skirt and stroma. Dynamic mechanical analysis and rheometer shows that compressive and shear storage moduli of all P407-PEG hydrogels fulfill in the strength range of human cornea (elastic modulus between 4 kPa and 40 kPa). P407-PEG hydrogels are implanted to Wistar rat thigh for 8 weeks to investigate biocompatibility of this artificial cornea skirt material. All rats have no obvious rejection or infection in whole implantation duration, and several compositions of P407- PEG hydrogels are demonstrate good biocompatibility. The data of swelling ratio, porosity, physical strength and paraffin processing subcutaneous implanted samples indicated that P407-PEG hydrogels are very potentially material of cornea skirt application.

參考文獻


1. Brabec, C.J., N.S. Sariciftci, and J.C. Hummelen, Plastic Solar Cells. Adv. Funct. Mater., 2001. 11: p. 15-26.
2. Coakley, K.M. and M.D. McGehee, Conjugated Polymer Photovoltaic Cells. Chem. Mater., 2004. 16: p. 4533-4542.
3. Brabec, C.J., Organic photovoltaics:technolog y and market. Sol. Energy Mater. Sol. Cells, 2004. 83: p. 273–292.
4. Yu, J., et al., Molecular Design of Interfacial Modifiers for Polymer-Inorganic Hybrid Solar Cells. Adv. Energy Mater., 2012. 2: p. 245–252.
5. Li, G., et al., High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat. Mater., 2005. 4: p. 864–868.

延伸閱讀