透過您的圖書館登入
IP:3.81.222.152
  • 學位論文

量子金鑰分發傳輸率

Secret Key Rates of Practical Quantum Key Distribution

指導教授 : 管希聖
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


隨著互聯網的興起,安全通信成為必須。因為互聯網上的訊息是 相對開放的,所以我們需要一些方法來加密我們的信息。用於解決密 鑰分發問題的現代密碼學使用公鑰密碼系統(PKC),其安全性基於 計算安全性。即有限的計算能力和資源。最常用的公開密鑰密碼系統 是 RSA,它基於難以分解大的相乘質數。然而,一台採用 Shor 演算 法的量子計算機可以在短時間內破解 RSA 密碼系統,從而威脅到當 前的 PCK。量子密鑰分配為解決密鑰分配問題提供了一條新途徑,其 安全性基於物理定律,如不確定性原理和不可複製原理。在 QKD 協 議中相互通信的用戶可以檢測到任何試圖獲得密鑰資訊的第三方的存 在。理想的 QKD 已被證明是無條件安全的(unconditional security)。 但在現實世界中,光源,探測器,通道損失等方面存在一些缺陷或 缺陷,可能被對手利用。在本論文中,我們討論了 decoy-state QKD, 它是克服由於單光子光源的不完善而引起的通訊通道中的光子數分 裂攻擊 (photon number splitting ) 的有效方案。我們還研究了獨立測量 設備(MDI)QKD 方案,以克服旁路探測器攻擊。將 MDI-QKD 與 decoy-state 方法相結合,在結合理論與實踐之間的差距提供了一條清 晰的途徑。我們使用真實的實驗參數來模擬和計算這些 QKD 協議中 生成的關鍵速率。

並列摘要


With the rise of the Internet, the secure communication becomes neces- sary and important. Because the information on internet is accessible to ev- eryone, we need some way to encrypt our message. Modern cryptography to solve key distribution problem use public key cryptography (PKC), and its security is based on the computational security. ie limited computing power and resources. The most commonly used public-key cryptosystem is RSA, which is based upon the difficulty to factor large semi-prime numbers. How- ever, a quantum computer with Shor’s algorithm can crack RSA cryptosystem in a short time, and thus will threaten the current PCK. Quantum key distribu- tion provides a new way to solve key distribution problem, and its security is based on the law of physics, such as the uncertainty principle and no-cloning theorem. The users who communicate with each other in the QKD proto- col can detect the presence of any third party that tries to gain knowledge of the key. The ideal QKD has been proven to be unconditionally secure. But in real world implementation, there are some flaws or imperfection in light sources, detectors, channel loss and etc. that may be exploited by adversaries. In this thesis, we discuss the decoy-state QKD that is an effective scheme to overcome the notorious photon number splitting attack in the communication channel due to the imperfection of single-photon light source. We also inves- tigate the measurement device independent (MDI) QKD scheme to overcome the side-channel detector attack. Combining the MDI-QKD with decoy-state method, offers a clear way to bridge the gap between theory and practice. We simulate and calculate the key rate generated in these QKD protocols using realistic experimental parameters.

參考文獻


[8] Xiongfeng Ma, Mohsen Razavi ,arXiv:1204.4856
[25] Yang Liu, Teng-Yun Chen, Jian Wang, Wen-Qi Cai, Xu Wan, Luo-Kan Chen, Jin- Hong Wang, Shu-Bin Liu, Hao Liang, Lin Yang, Cheng-Zhi Peng, Kai Chen, Zeng- Bing Chen, and Jian-Wei Pan, Opt. Express 18, 8587-8594 (2010)
[22] K. M. Rosfjord, J. K.W. Yang, E. A. Dauler, A. J. Kerman, V. Anant,B. M. Voronov, G. N. Goltsman, and K. K. Berggren, Opt. Express 14, 527 (2006).
[5] D.Stucki,N.Brunner,N.Gisin,V.Scarani,andH.Zbinden.Fastandsimpleone-way quantum key distribution. Applied Physics Letters, 87(19):194108194108, 2005.
[9] E. Artur “Quantum cryptography based on Bell‟s theorem.”,Phys. Rev. Lett., Vol. 67, No, 6,5 august 1991, pp 661-663.

延伸閱讀


國際替代計量