透過您的圖書館登入
IP:18.190.156.212
  • 學位論文

相位控制調諧質量阻尼器

Phase Control Tuned Mass Damper

指導教授 : 鍾立來

摘要


現今對於調諧質塊阻尼器的研究與應用已相當廣泛,但經由解析相位去了解調諧質塊阻尼器之減振效果,仍著墨較少且不完全。因此本文先針對調諧質量阻尼器之能量流理論(power flow theory)進一步闡述,探討調諧質量阻尼器與結構之間的相位關係,其顯示調諧質量阻尼器於90度相位差落後時為吸收結構能量,但於90度相位差超前時,則反將能量傳回結構。此外,並探討調諧質量阻尼器與外力之間的相位,對減振效果的影響,提出調諧質量阻尼器之能量阻抗的概念,其顯示與外力為180度相位差時有最佳之阻抗效果,較全面性的討論相位對調諧質量阻尼器減振效果的影響。而後,本文提出半主動式相位控制調諧質量阻尼器,其模型為傳統調諧質量阻尼器外加一半主動控制之摩擦裝置,藉由半主動控制之摩擦力,於調諧質塊擺動之特定時間,施加摩擦力,可調整質量塊與結構之間之相位,使其能盡量維持與結構為一落後90度之相位差,因而如能量流理論所述般達到最佳減振效果。為驗證相位控制調諧質量阻尼器之可行性,分別以單自由度結構或多自由度結構,於諧和外力、風力或基底振動下,進行一系列之數值模擬。數值模擬結果顯示,結構加裝相位控制調諧質量阻尼器後,於風力或基底振動下,與傳統調諧質量阻尼器相比皆可有較大的減振頻率帶寬,且不論多自由度結構或其經單自由度化之結構,結構反應皆可有更佳之控制效果。由相位控制調諧質量阻尼器設計參數之敏感度分析顯示,相位控制調諧質量阻尼器對於其設計之頻率比及阻尼比皆不敏感,因此可同時於風力下及基底振動下之應用,解決傳統調諧質量阻尼器適應式之問題。唯所需之摩擦力限制較多,如施加之摩擦力太小,則失去相位控制效果,如施加之摩擦力太大,則摩擦力將對於結構加速度將有一負面影響,因此設計時需仔細考量。最後以實際案例進行風力及地震力之數值分析,驗證相位控制調諧質量阻尼器確實可發揮減振效果,滿足其舒適度之要求,更可降低離頻效應之影響。

並列摘要


Although the energy absorbing ability of the TMD has been discussed by power flow theory, the phase-mechanism of the TMD is not comprehensively discussed. In this study, the phase of the TMD relative to the structure is presented in power flow theory and discussed in detail, and the phase of the TMD relative to the external force is further discussed and described by the power reactance which shows the TMD has the ability to balance the external energy input to the system. Based on the power flow theory, the semi-active phase control tuned mass damper (PC-TMD) is developed and investigated. The phase control algorithm is proposed for the PC-TMD to judge the specific moment to apply friction force by semi-active friction device. By applying the friction force, the PC-TMD mass block moves along the desired trace and back to the 90-degree phase lag to the structure for achieving the maximum power flow. The numerical simulations demonstrate that the PC-TMD outperforms the conventional TMD in structural vibration reduction, especially for mitigating the detuning problem. The simulation results also indicate that the PC-TMD can be utilized for wind loads or base excitation application, and for single-degree-of-freedom (SDOF) structure or multiple-degree-of-freedom (MDOF) structure. In addition, the design parameters of the PC-TMD is the same for both wind loads and base excitation application so that the PC-TMD can be well performed for wind loads and base excitation simultaneously.

參考文獻


3. Shi W, Shan J, Lu X. Modal identification of Shanghai World Financial Center both from free and ambient vibration response. Engineering Structure, 36:14-26, (2012).
4. Lu X, Li P, Guo X, Shi W, Liu J. Vibration control using ATMD and site measurements on the Shanghai World Financial Center Tower. The Structural Design of Tall and Special Buildings, 23:105-123, (2014).
6. Den Hartog JP. Mechanical Vibrations. McGraw-Hill: New York, 1956.
7. Warburton GB, Ayorinde EO. Optimum absorber parameters for simple systems. Earthquake Engineering and Structural Dynamics, 8:197-217, 1980.
8. Ayorinde EO, Warburton GB. Minimizing structural vibrations with absorbers. Earthquake Engineering and Structural Dynamics, 8:219-236, 1980.

延伸閱讀