透過您的圖書館登入
IP:18.232.88.17
  • 學位論文

機器輔助亞急性中風治療:動作功能與生物標記之個案系列研究

Effects of robot-assisted therapy on motor function and biomarkers in subacute stroke patients: a case series

指導教授 : 林克忠
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


前言 中風是導致成人長期失能的主因。機器輔助治療被認為是相當具潛力之臨床復健療法,其中具雙側鏡像動作特性的Bi-Manu-Track對上肢動作損傷成效尤為顯著,但其介入的適用時機、使用劑量與結合其他療法的應用仍待探究。生物標記與復健療效的關係更是值得探討的跨領域研究趨勢。 目的 本前導型研究試圖以臨床試驗,驗證機器輔助治療搭配任務導向練習於亞急性中風患者之上肢動作、日常生活功能與生活品質的相關之復健成效,並參照生物標記之變化,有助於中風復健的實證醫學與臨床應用之參考。 方法 採前後測之臨床試驗,針對亞急性中風個案進行每天1.5小時、每週5天、持續4週的治療。主要成效評估包含Fugl-Meyer Assessment (FMA)、Medical Research Council Scale (MRC)、Functional Independence Measures (FIM)、Wolf Motor Function Test (WMFT),次要成效評估包含Motor Status Scale (MSS)、Modified Ashworth scale (MAS)、accelerometer、Action Research Arm Test (ARAT)、Box and Block Test (BBT)、Motor Activities Log (MAL)、ABILHAND Questionnaire、Modified Rankin Handicap Scale (mRS)、Functional Ambulation Categories (FAC)和Postural Assessment Scale for Stroke Patients (PASS)、Stroke Impact Scale (SIS)、EuroQol Quality of Life Scale (EQ-5D)等評估工具,囊括ICF各層面之分析。生物標記包含glycated haemoglobin (HbA1c)、C-reactive protein (CRP)。資料分析運用Wilcoxon signed-ranks test進行前後測比較與Spearman's Rank-Order Correlation Coefficient進行臨床指標與生物標記的相關分析。 結果 主要成效FMA近遠端、MRC近遠端、FIM與WMFT等項目都達高度效應值與顯著差異,生活品質層面成效呈現中到高度效應值,但未達顯著差異。生物標記部分,HbA1c與CRP在治療後均呈現下降趨勢。而部分臨床評估工具與生物標記呈相關趨勢。 結論 研究結果支持機器輔助治療於亞急性、中重度損傷中風個案的動作損傷與日常生活功能的改善。未來應進行更大樣本的隨機對照研究,並持續關注生物標記與臨床功能變化的關係。

關鍵字

動作功能 生物標記 復健 機器 中風

並列摘要


Introduction Stroke is the leading cause of long-term disability. Robot-assisted therapy (RT) is a promising and effective intervention in rehabilitation. The Bi-Manu-Track, which is operating in mirror mode, is particularly with remarkable efficacy in upper extremity impairment. However, the applications of RT, such as proper dosage, intervention timing, combined therapy, needed further investigation. The relationship between effects in rehabilitation and change in biomarkers was merely known and of great worth to explore. Objective This pilot study aimed to testify the effects of RT combined task-oriented practice in subacute stroke patients. Outcome measures included upper limb impairment, function of daily life, the quality of life, and the change of biomarkers. The results would contribute to evident-based medicine and could be helpful in clinics. Methods A pretest-posttest, control group design was used in this pilot study. The participants received treatment for 90 to 105 minutes per session, 5 sessions on weekdays, for 4 weeks. Primary outcome measures included Fugl-Meyer Assessment (FMA), Medical Research Council Scale (MRC), Functional Independence Measures (FIM), Wolf Motor Function Test (WMFT). Secondary outcome measures included Motor Status Scale (MSS), Modified Ashworth scale (MAS), accelerometer, Action Research Arm Test (ARAT), Box and Block Test (BBT), Motor Activities Log (MAL), ABILHAND questionnaire, modified Rankin Handicap Scale (mRS), Functional Ambulation Categories (FAC), Postural Assessment Scale for Stroke Patients (PASS), Stroke Impact Scale (SIS), EuroQol Quality of Life Scale (EQ-5D). Biomarkers included glycated haemoglobin (HbA1c), C-reactive protein (CRP). Data analysis used Wilcoxon signed-ranks test and Spearman's Rank-Order Correlation Coefficient. Results Large and significant effects were found in the FMA, MRC at both proximal and distal part of upper-limb motor impairment, and most aspects of daily function measured by FIM and WMFT. The results in quality of life demonstrated nonsignificant, medium to large effects. HbA1c and CRP exhibited decline after treatment. Partial clinical outcome measures were related to the change in biomarkers. Conclusions The results supported using RT could improve motor impairment, daily function in subacute stroke patients. We need larger sample size, randomized controlled trials in the future, and continuously paying close attention to the relationship between biomarkers and clinical outcomes.

並列關鍵字

Motor function biomarker rehabilitation robotics stroke

參考文獻


Hesse, S., Werner, C., Pohl, M., Rueckriem, S., Mehrholz, J., & Lingnau, M. L. (2005). Computerized arm training improves the motor control of the severely affected arm after stroke: a single-blinded randomized trial in two centers. Stroke, 36(9), 1960-1966. doi: 10.1161/01.STR.0000177865.37334.ce
Hsieh, Y. W., Wu, C. Y., Liao, W. W., Lin, K. C., Wu, K. Y., & Lee, C. Y. (2011). Effects of treatment intensity in upper limb robot-assisted therapy for chronic stroke: a pilot randomized controlled trial. Neurorehabil Neural Repair, 25(6), 503-511. doi: 10.1177/1545968310394871
Krebs, H. I., Volpe, B. T., Williams, D., Celestino, J., Charles, S. K., Lynch, D., & Hogan, N. (2007). Robot-aided neurorehabilitation: a robot for wrist rehabilitation. IEEE Trans Neural Syst Rehabil Eng, 15(3), 327-335. doi: 10.1109/TNSRE.2007.903899
Kwakkel, G., Kollen, B. J., & Krebs, H. I. (2008). Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabil Neural Repair, 22(2), 111-121. doi: 10.1177/1545968307305457
Kwakkel, G., Kollen, B. J., van der Grond, J., & Prevo, A. J. (2003). Probability of regaining dexterity in the flaccid upper limb: impact of severity of paresis and time since onset in acute stroke. Stroke, 34(9), 2181-2186. doi: 10.1161/01.STR.0000087172.16305.CD

延伸閱讀