透過您的圖書館登入
IP:18.191.21.86
  • 學位論文

細胞力學電磁鑷子結合定力回饋系統之設計

The design of cell-mechanical electromagnetic tweezers with a constant-force feedback system

指導教授 : 董成淵

摘要


電磁鑷子已經被証實是一個對生物細胞施以外力刺激的有效工具。經由改變電流及控制電磁鑷子針尖和細胞之間的距離,電磁鑷子對生物細胞施力的範圍可以數十個piconewton (pN)到數個nanonewton (nN)。然而,在使用電磁鑷子來對生物細胞施加定量外力的細胞力學研究之中,卻一直有著施力大小無法突破 數量級的限制。 在此篇論文之中,我們結合了自行設計的單磁極電磁鑷子與定力回饋系統於倒立式顯微鏡之上;透過圖形化程式LabVIEW來整合定力回饋系統中的數個硬體,包括電荷藕合元件 (charge-coupled device)、步進馬達移動平台 (motorized stage)及直流電源供應器 (DC power supply),因而能夠施加數十個 到數個 的定量外力在一生物細胞之上。未來則希望能夠將此電磁鑷子系統與螢光顯微術 (fluorescence microscopy)相結合,以用來觀測並研究生物細胞受到力學刺激之後的反應與機制。

並列摘要


Electromagnetic tweezers have been demonstrated to be an effective tool in exerting mechanical stimulus in biological cells. By varying the currents applied to the electromagnetic poles and the distance between the tip and cells, force from the piconewton (pN) to nanonewton (nN) can be generated. However, among the cell-mechanical researches which used electromagnetic tweezers to applied constant stimulus to affect cells, the force generated to the cells is restricted to the order of nN. In this thesis, we combine a single-pole electromagnetic tweezers with a constant-force feedback system on an inverted microscope. By using the graphical programming, LabVIEW, several hardware were integrated in the constant-force feedback system including the charge-coupled device、the motorized stage and the DC power supply, the pN to nN constant force can be applied to a single cell. In the future, we hope to combine this electromagnetic tweezers system with fluorescence microscopy to study the response and mechanism of the cells after affecting by mechanical stimulus.

參考文獻


41. 致茂電子股份有限公司, http://www.chroma.com.tw/.
1. Zhu, C., G. Bao, and N. Wang, Cell mechanics: Mechanical response, cell adhesion, and molecular deformation. Annual Review of Biomedical Engineering, 2000. 2: p. 189-226.
4. Fass, J.N. and D.J. Odde, Tensile force-dependent neurite elicitation via anti-beta 1 integrin antibody-coated magnetic beads. Biophysical Journal, 2003. 85(1): p. 623-636.
5. Shieh, A.C. and K.A. Athanasiou, Principles of cell mechanics for cartilage tissue engineering. Annals of Biomedical Engineering, 2003. 31(1): p. 1-11.
6. Huang, H.D., R.D. Kamm, and R.T. Lee, Cell mechanics and mechanotransduction: pathways, probes, and physiology. American Journal of Physiology-Cell Physiology, 2004. 287(1): p. C1-C11.

延伸閱讀