透過您的圖書館登入
IP:3.145.166.7
  • 學位論文

磁性雜質效應於低維度自旋軌道耦合系統

Low-Dimensional System with Spin-Orbit Interaction: Magnetic Impurity Effect

指導教授 : 張慶瑞

摘要


本文著重於磁性雜質在低維系統中對電子自旋分佈的影響及磁性雜質磁化方向的探討。於電子系統中,將考慮到自旋軌道耦合的效應,並於系統兩端通入偏壓,觀察在非平衡下的電子自旋傳輸行為,而實際系統將著重在兩種材料中,一種是存在於 二維異質結構系統中的二維電子氣系統(2DEG),另一種則著重在具有鋸齒型邊界的二維蜂巢晶格帶(honeycomb lattice ribbons with zigzag edges), 前者具有近似自由電子的行為,可由薛丁格方程描述之,後者由於能帶上有線性交叉的現象,可由狄拉克方程來描述。本文便對此兩種電子系統,在單顆磁性雜質的影響下,探究基本的電子物理特性與未來在自旋電子學產業中的應用。 首先,將利用平均場非平衡格林函數方法研究磁性雜質於二維異質結構系統中的二維電子氣系統(2DEG)其靜態時的磁化方向,並且發現在如此系統下的自旋耦合效應將引起磁性雜質磁化方向的穩定性議題。研究中發現,此磁性雜質將具有兩種靜態的磁化方向,分別是穩態和亞穩態兩種狀態,將取決於此系統中磁性雜質與流動電子間的交換耦合作用(exchange interaction)強度。當此交換耦合作用逐漸增強,於磁性雜質的位置上將產生足夠大的引力位能井,而導致在磁性雜質位置上局域性反向電流的產生,如此的局域性反向電流決定磁性雜質的穩態和亞穩態。同時,我們發現將磁性雜質置入二維電子氣中將會有磁性屏蔽的效應產生。 再者,為了更進一步模擬較為真實的磁性雜質,將考慮所謂的磁性異向場對磁性雜質的影響。對於磁性異向場,在我們的研究中將著重在最簡單的異向場型式,即單軸異向場,此單軸異向場將破壞磁性雜質對空間的對稱性,使的在無其它作用或作用甚小的情況下,磁性雜質的磁化方向將平行於此軸的方向。於是,在非平衡下的Rashba電子將與磁性雜質進行角動量的交換,而產生所謂的本質自旋轉矩。藉由控制偏壓大小和方向,此轉矩將造成自旋翻轉。藉由我們的研究發現,磁性雜質的自旋翻轉的確可由平均場非平衡格林函數方法所證實,並且,隨著偏壓大小的改變,磁性雜質的自旋翻轉將是三維空間軌跡,而改變偏壓的方向,磁性雜質的翻轉軌跡將與自己的路徑歷史相關,此為所謂的磁滯現象(hysteresis)。三維空間軌跡主要是由於單軸異向場對系統所具有的鏡像對稱的破壞,而磁滯現象的發生即是由於異向場的引入。 最後,將重心放在狄拉克方成所描述的電子系統中,近來在鋸齒型邊界的二維蜂巢晶格帶發現所謂的托樸絕緣體相位,此相位來自線性能帶關係的電子行為,此線性能帶是由於考慮此系統內本質自旋耦合效應的作用而產生,並且此相位基本上可由時間反演對稱性所保護。托樸絕緣體近來在自旋電子學中是極重要的發現,可用來做為自旋電流的產生源。因此,我們將探討磁性雜質對鋸齒型邊界二維蜂巢晶格帶托樸絕緣相位的影響,此磁性雜質將被極化在某特定方向,並改變置入的位置和極化的方向。結果可發現,當磁性雜質磁化方向位於二維蜂巢晶格帶所屬的平面上,並且置入於非邊界區上,則托樸絕緣體相位可被保護而不受局域性的磁化雜質所影響。除此之外,對於此磁料中的晶格電子,一旦有磁性雜質的介入後,將有兩種任務必須執行,其一為降低系統的交換耦合能量,另一種為維持系統的磁中性。發到現當交換耦合作用強度增強,維持磁中性的趨勢將俱增,同樣發生在2DEG的磁屏蔽現象亦被發現而更加顯著。

並列摘要


The mean-field-assisted Landauer-Keldysh formalism is employed to study the orientation of a magnetic impurity embedded in two-dimensional electron gas(2DEG)with Rashba spin-orbit coupling. Interesting physics arises about the stability of the impurity spin. The spin of Rashba electrons interacting with magnetic impurity spin has two steady states, while the stable or unstable state depends on the local charge current and the exchange coupling strength between the local impurity spin and itinerant electrons. Furthermore, the stable steady state of impurity spin gives rise to an interesting phenomenon, magnetic screening effect in a 2DEG system. To mimic a realistic magnetic impurity, we take into account the anisotropic effect of the embedded magnetic impurity. The same formalism is also utilized to study the flip of an impurity spin under a uniaxial anisotropic field in two-dimensional electron gas with Rashba spin-orbit coupling. The spin-flip process with uniaxial anisotropic axis set to three different directions is investigated in a four-terminal Landauer setup. We show that the spin flip follows a three-dimensional trajectory rather than in-plane motion. As bias voltage changes sign, the impurity spin will flip from one saturated state to another and move along a different trajectory, depending on the chosen initial saturated state. Considering different host material, we pay our attention to the honeycomb lattice, which is relevant to high electron mobility and topological phase, as exemplified by the graphene. The spin density pattern of a pinned magnetic impurity embedded in the honeycomb lattice with zigzag edges in the presence of intrinsic spin-orbit coupling, are investigated by employing mean-field-assisted Landauer--Keldysh formalism. Effects of pinning direction and species of sublattice on electron spins are analyzed. We demonstate that the non-equilibrium edge-state spin accumulation induced by intrinsic spin-orbit coupling is surprisingly robust against the local time-reversal symmetry breaking in specific conditions. That is, the pinning field lies on the plane of ribbon, and embedding position is not on the B-site of the edge. In particular, the induced local spin can be parallel or anti-parallel to impurity spin, determined by which sublattice the pinned impurity is located.

參考文獻


[14] B. Andrei Bernevig, Taylor L. Hughes, Shou-Cheng Zhang, Science 314 , 1757 (2006).
[4] D. D. Awschalom, D. Loss, and N. Samarth, editors. ”Semiconductor Spintronics and Quantum Computation”. Springer, Berlin (2002).
C. L. Yang, H. T. He, Lu Ding, L. J. Cui, Y. P. Zeng, J. N. Wang, and W. K. Ge, Phys. Rev. Lett. 96, 186605 (2006).
[16] Qin Liu, Chao-Xing Liu, Cenke Xu, Xiao-Liang Qi, and Shou-Cheng Zhang, Phys. Rev. Lett. 102, 156603 (2009).
Chapter 1

延伸閱讀