透過您的圖書館登入
IP:18.221.165.246
  • 學位論文

含銦氧化鋅之特殊光學性質與氧化鋅/硫化鋅複合物之螺旋生長研究

Optical Properties of ZnO with In inclusion and Spiral Growth of ZnO/ZnS Composites on Mica

指導教授 : 陳永芳

摘要


在本文中,我們以硫化鋅(ZnS)為原料,使用化學氣相沈積法,在硫化鋅高溫蒸發後得到我們想要的氧化鋅產物。本文一共分為兩個部分,第一部分是有關於氧化鋅奈米針,以及加入銦之後生長成氧化鋅奈米線的製程,以及其光學性質的探討;第二部分是有關於在雲母上製成氧化鋅的奈米螺旋物,並探究其生長機制,以及生長基板對於生長物的影響。 在第一部分裡,我們將介紹如何製作氧化鋅奈米針及含銦的氧化鋅奈米線。我們發現在生長氧化鋅的過程中加入銦會有助於氧化鋅晶體生長得更完整,並且因此讓其結構性更好,使得氧化鋅的紫外線發光更強,並且抑制其所發出的可見光,從而讓氧化鋅可以因為其發光特性而有更好的應用。在第二部分裡,我們會說明如何製成氧化鋅、硫化鋅複合物的螺旋結構,並且討論其生長機制,以及證明氧化鋅所用來生長的基板確實會對於氧化鋅的生成產生影響。 本論文將利用SEM、Raman scattering、XRD、EDX、catholuminescence以及photoluminescence的實驗結果來證明我們的推論。

並列摘要


This paper has two parts. Part 1 is about the morphology and optical properties of undoped and In-doped ZnO nanostructures synthesized on upside-down silica; part 2 is about the spiral growth of nanostructures of ZnS-ZnO composites on mica. ZnS is used as sources. The ZnO nanostructures were all synthesized by a no-catalyst thermal evaporation method. The morphology of the samples was examined by scanning electron microscope (SEM). X-ray diffraction (XRD), Raman scattering and electronic energy-dispersive X-ray experiments were also performed. The optical properties were investigated by cathodoluminescence and photoluminescence; the spectra will be shown. In part 1, incisive undoped ZnO nanopins were fabricated, and shows the result that doping indium will change the morphology of ZnO nanopins to nanowires. It is reported that In inclusion will improve the crystallization of zinc oxide, and enhance the UV emission of ZnO. The green luminescence could be diminished by inclusion of In, and then the origin of the defect of ZnO nanostructures will be discussed. In part 2, we will show that different substrates can influence the morphology, orientation and optical properties of ZnO nanostructures. The photoluminescence spectra indicate that the ZnO/ZnS composites have potential application for green light emitter.

並列關鍵字

ZnO ZnS powder In nanostructures optical property mica spiral growth

參考文獻


[24]S. Keller, U. K. Mishra, S. P. Denbaars, and W. Seifert, Jpn. J. Appl. Phys. 37 (1998) L431
[9]Y. W. Wang, L. D. Zhang, G. Z. Wang, X. S. Peng, Z. Q. Chu, and C. H. Liang, J. Cryst. Growth 234 (2002) 171.
[22]Y. Zou, Y. Wang, Z. Chen, J. Wang, and Y. Li, Mater. Lett. 59 (2005) 3042
[12]Y. W. Wang, L. D. Zhang, G. Z. Wang, X. S. Peng, Z. Q. Chu, and C. H. Liang, J. Cryst. Growth 234 (2002) 171.
[16]J. Li, G. J. Fang, C. Li, L. Y. Yuan, L. Ai, N. S. Liu, D. S. Zhao, K. Ding, G. H. Li, and X. Z. Zhao, Appl. Phys. A, 90 (2008) 759

延伸閱讀