透過您的圖書館登入
IP:3.80.129.195
  • 學位論文

血液透析參數關係之基礎研究

Fundamental Study of Parameter Relationship in Hemodialysis

指導教授 : 劉志文

摘要


摘要 本論文是以發展生物醫學應用時,涵蓋物理和化學領域的性質都需要分析處理,故提出針對其巨觀和微觀物理問題的解決方法為目的,並且為應用於巨觀與微觀系統回饋控制最佳化的研究工作做好基礎準備。首先,從解釋物理的量子力學來開始,本文推導通用物理關係式進而展開成多重物理關係表,並將其以偏微分方程式的形式作為統御方程式,在血液透析器內應用通用物理關係式來了解主導電漿暫態變化而影響未來血液透析器纖維表面狀況的各種因素。本論文的內容和貢獻是建立嵌入式長期自新型血液透析人工腎臟(Renewable Hemodialysis artificial kidney, RHD Prototype, a renal replacement therapy)與生物物理化學的參數關係。定性實驗和定量案例,用來示範說明如何使用通用物理關係式來探討物理化學之參數關係,以達成確認長期使用RHD人工腎臟而其受生理學上生物物理化學參數的影響程度,預期長期使用RHD人工腎臟所需的最低安全底限,特別是受生物體溫度而產生的RHD人工腎臟材料變形。針對定性實驗,纖維塑膠樣本試片被加熱處理而產生表面應變,進而完全釋放樣本試片材料中的製作加工應力。 由於表面變形的出現,定性驗證了應力和溫度之間的關係,從而確認在偏微分形式之物理關係式下所代表的物理意義。案例研究則是當作針對表面變形的量測,來定量地確定溫度和應力之間的關係,這是通用物理關係式的一個說明使用方法的示範特例。定性實驗驗證和定量實驗案例研究之詳細說明示範內容,在論文內容各章節連接流暢度、研究思考順序性以及論文格式、品質與價值的考量之下,將其置於附錄10。

並列摘要


Abstract This dissertation develops a method to solve macro- and micro- physical problems for property relation among biomedicical application over physical and chemical domains within the framework of optimal feedback control for preparing in the work of application. Starting from physical interpretation of quantum mechanics, the General-Physical Relation is derived and then expanded into the Multi-Physics Relations Table, and expressed in partial differential form to serve as the governing equation (for describing the transient probability density of frontier orbital electron to apply hemodialyzer fiber surface in the future) which is the dominant factors of plasma in hemodialyzer. Content and contribution of this dissertation are to build relationships between bio-physical and chemical parameters of embedded long-term self-renewable hemodialysis (Renewable Hemodialysis artificial kidney, RHD Prototype, a renal replacement therapy). Qualitative experiment and quantitative case study demonstrate the use of the relationship between bio-physical and chemical parameters in order to achieve the minimum security baseline required for the long-term use of RHD artificial kidney with the influence of physiologically bio-physical and chemical parameters, especially body temperature and the material deformation of RHD artificial kidney. For the qualitative experiment, fiber plastic specimens are heat treated to produce surface strain, thereby completely releasing the stress in the material. The presence of surface distortion qualitatively confirms the relation between stress and temperature, thereby confirming the underlying physical meaning of the physical relation. A case study is undertaken to measure the surface strain for quantitative confirmation of the relation between temperature and stress. This is a demonstration of the special case of General-Physical Relation. The all details of the qualitative experiment and quantitative case study are in Appendix 10.

參考文獻


Reference
1. N. A. Hoenich, and C. Ronco, “Selecting a dialyzer: Technical and clinical considerations”, Handbook of Dialysis Therapy, Fourth Edition, PA USA, Saunders Elsevier Health Sciences, pp. 481-497, 2008.
2. S. Mandolfo, F. Malberti, E. Imbasciati, P. Cogliati, and A. Gauly, “Impact of blood and dialysate flow and surface on performance of new polysulfone hemodialysis dialyzers”, 2003, The International Journal of Artificial Organs, Vol. 26, No. 2, pp.113-120.
3. J. K. Leypoldt, A. K. Cheung, L. Y. Agodoa, J. T. Daugirdas, T. Greene, P. R. Keshaviah, and G. J. Beck, “Hemodialyzer mass transfer-area coefficients for urea increase at high dialysate flow rates”, 1997, Kidney International, Vol. 51, No. 6, pp.2013-2017.
4. A. T. Azar, “Increasing dialysate flow rate increases dialyzer urea clearance and dialysis efficiency: an in vivo study”, 2009, Saudi Journal of Kidney Diseases and Transplantation, Vol. 20, No. 6, pp. 1023.

延伸閱讀