透過您的圖書館登入
IP:3.145.58.169
  • 學位論文

磺化聚醯亞胺/聚乙烯醇半互穿型網狀結構體作為燃料電池之質子交換膜的研發

Studies on Preparation of Semi-interpenetrating Networks of Sulfonated Polyimide/Poly(vinyl alcohol) as Proton Exchange Membranes for Fuel Cell Application

指導教授 : 謝國煌

摘要


本研旨在合成一系列之磺化聚醯亞胺/聚乙烯醇(SPI/PVAs)共混聚合物及磺化聚醯亞胺/聚乙烯醇半互穿型網狀(SIPN SPI/cPVA20-GAs)之質子交換膜。 其中SPI 的合成是使用高耐水解的1,4,5,8-萘四酸二酐(NTDA)為二酸酐、4,4’-二氨基二苯醚(ODA)為非磺化二胺單體與具有雙磺酸基之4,4-二(4-胺苯甲基)二苯(BAPBD)單體進行熱醯亞胺化;PVA 分別以5 phr、10 phr與20 phr 的比例混摻於SPI 中而製備出不同組成比例的共混聚合物;將SPI/PVA20 膜浸於30 ℃ 的1 vol% 的戊二醛(GA)水溶液(pH~1.4)中,使GA 對PVA 進行交聯反應,製備出不同交聯程度的半互穿型網狀結構;利用FTIR-ATR 鑑定SPI 的醯亞胺化以及PVA 和GA 的交聯反應特性。 最後利用熱性質分析、含水率、尺寸穩定性、氧化穩定性、質子傳導度、甲醇穿透度以及直接甲醇燃料電池(DMFC)發電效能來分析SPI/PVAs 共混聚合物和SIPN SPI/cPVA20-GAs 的質子交換膜特性。

並列摘要


In this study, a series of polyimide/poly(vinyl alcohol) (SPI/PVAs) polymer blend and semi-interpenetrating networks of sulfonated polyimide/poly(vinyl alcohol) polymer (SIPN SPI/cPVA20-GAs) proton exchange membranes were successfully synthesis. The linear polymer composes of sulfonated polyimide (SPI) derived from 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA), sulfonated 4,4'-Bis(4-aminophenoxy)biphenyl (BDSA) and 4,4’-oxydianiline (ODA) were prepared by a thermal imidization reaction. SPI was blended with 5 phr, 10 phr and 20 phr PVA respectively to obtain SPI/PVAs polymer blend membranes. The networks structure of PVA was prepared by immersing SPI/PVA20 membrane in pH~1.4, 1vol% glutaraldehyde (GA) solution at 30℃. By controlling crosslinking time, different crosslinking degree of SIPN SPI/cPVA20-GAs membranes can be obtained. Fourier transform infrared spectroscopy (FTIR-ATR) were utilized to verify the synchronization of the imidization of sulfonated poly(amic acid) (SPAA) and the crosslinking reactions between PVA and GA. The structure-property relationship of proton exchange membranes are discussed in details according to the chemical structure of the various content and crosslinking degree of PVA in the SPI/PVAs polymer blend and SIPN SPI/cPVA20-GAs proton exchange membranes from the viewpoints of thermal stability, water uptake, dimension stability, proton conductivity, oxidation stability, methanol permeability, and direct methanol fuel cell (DMFC) performance.

參考文獻


10. 翁芳柏 and 徐耀昇, 燃料電池實驗教材. (亞太燃料電池科技股份有限公司, 2006).
61. W. Y. Chiang and C. L. Chen, polymer 39 (11), 2227-2233 (1998).
70. J. Qiao, T. Hamaya and T. Okada, Polymer 46 (24), 10809-10816 (2005).
50. B. Jung, Y. Woob, S. Y. Ohb and Y. S. Kanga, Journal of Membrane Science 220 (1-2), 31-45 (2003).
81. K. Chen, Z. Hu, N. Endo, J. Fang, M. Higa and K.-i. Okamoto, Journal of Membrane Science 351 (1-2), 214-221 (2010).

延伸閱讀