透過您的圖書館登入
IP:18.118.0.240
  • 學位論文

應用共振式微懸臂樑感測器量測C反應蛋白之研究

Detection of C-Reactive Protein Using Resonance Micro-cantilever Beam Sensor

指導教授 : 沈弘俊

摘要


本研究是以原子力顯微鏡與光纖干涉量測技術為架構,將微懸臂樑生物感測器應用於C反應蛋白之檢測,不僅可以簡化龐大的實驗設備,也可以增進量測的穩定性,光纖干涉儀在量測過程中不容易受到外界環境而影響實驗結果。本實驗藉由化學表面修飾,在微懸臂樑上鍵結C反應蛋白。在鍵結的過程中,將微懸臂樑生物感測器浸泡於含有待鍵結分子之溶液,再將之取出風乾,以進行共振頻的量測。在量測微懸臂樑的共振頻之前,須將微懸臂樑浸泡於去離子水中,否則將會因為磷酸鹽生物緩衝液乾燥之後在懸臂樑上留下結晶而影響光纖干涉儀量測結果。本文共檢測四種不同C反應蛋白溶液之濃度,分別為1、10、100以及1000ug/mL,每種濃度之共振頻停止變化的時間約在240至270分鐘後。在不同的濃度下,總共振頻的偏移量也不同,其變化量分別為117.6、144、211以及232.8 Hz。根據實驗結果,儘管C反應蛋白濃度不同,在鍵結開始後的30分鐘共振頻的變化皆為其總變化量的70%以上,表示在本研究所獲致的成果,在短時間內就可以達到檢測的效果。

並列摘要


Resonant based micro-cantilever was applied for the detection of C-reactive protein based on the technology of fiber interferometry. The vast apparatus was simplified, and the stability was increased. Resonant frequency shift of the micro-cantilever measured by fiber interferometry was remained undisturbed during experimental procedure.C-reactive protein was immobilized on micro-cantilever using surface micromachining technique. Micro-cantilever was immersed in the solution containing molecules which were about to be bonded, and parched before measuring the resonant frequency. The crystalline solid from dried PBS on surface of the micro-cantilever will affect the measurement and cause erroneousness. The D.I. water washout process was employed to fix the issue. The concentrations of C-reactive protein solution were 1, 10, 100 and 1000 ug/mL, and total resonant frequency shift were 117.6, 144, 211 and 232.8 Hz respectively. A distinct change in the resonant frequency of micro-cantilever was observed as a function of time. Resonant frequency decreased rapidly over 70% from initial value in the first 30 minutes of C-reactive protein antigen-antibody interaction and attained 95% after 240 minutes in saturation.

參考文獻


游育諺,高靈敏度之壓阻式微懸臂梁生物感測器應用於蛋白質分子之即時檢測,國立台灣大學應用力學所碩士論文,2006。
Abadal, G., Davis, Z.J., Helbo, B., Borrise, X., Ruiz, R., Boisen, A., Campabadal, F., Esteve, J., Figueras, E., P´erez-Murano F., and Barniol, N., “Electromechanical model of a resonating nano-cantilever-based sensor for high-resolution and high-sensitivity mass detection”, Nanotechnology, Vol. 12(2), pp. 100-104, 2001.
Battiston, F.M., Ramseyer, J.P., Lang, P.H., Baller, M.K., Gerber, Ch., . Gimzewski, J.K., Meyer E., and Güntherodt, H.J., “A chemical sensor based on a microfabricated cantilever array with simultaneous resonance-frequency and bending readout”, Sensors and Actuators B, Vol. 77, pp. 122-131, 2001.
Braun, T., Barwich, V., Ghatkesar, M.K., Bredekamp, A.H., Gerber, C., Hegner, M., and Lang, H.P., “Micromechanical mass sensors for biomolecular detection in a physiological environment”, Physics Review, E72, 031907, 2005.
Burg, T.P., Godin, M., Knudsen, S.M., Shen, W., Carlson, G., Foster, J.S., Babcock, K., and Manalis, S.R., “Weighing of biomolecules, single cells and single nanoparticles in fluid”, Nature, Vol. 446, pp. 1066-1069, 2007.

被引用紀錄


陳律蓉(2011)。共振式微懸臂樑生物感測器之開發〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2011.00172

延伸閱讀