透過您的圖書館登入
IP:18.117.216.229
  • 學位論文

超寬頻介質共振器天線設計

Design of Ultrawideband Dielectric Resonator Antennas

指導教授 : 孫卓勳
共同指導教授 : 賴柏洲

摘要


本篇論文使用了一種低介電常數的材料來取代傳統的介質共振器。分析探討新形式的介質共振器天線並將其使用於超寬頻的應用上。 首先,本篇論文提出了一種混合式的天線結構,搭配上寄生槽孔來增加介質共振器天線的操作頻寬。利用共平面波導饋入和寄生槽孔,使得介質共振器天線在設計更具有靈活性。阻抗頻寬為3.1GHz-4.9GHz,天線增益分別為3.6dBi和2.36dBi,皆符合超寬頻應用技術中多頻帶正交分頻多工(MultiBand-Orthogonal Frequency Division Multiplexing;MB-OFDM)的第一個頻帶規範(3.168-4.752GHz)。最後,本篇論文介紹另一種天線結構,藉由改變介質共振器的尺寸來滿足超寬頻當中低頻帶的邊界條件。使用微帶線饋入的方式可以更符合超寬頻的輻射特性。透過量測的結果,此介質共振器天線具有良好的輻射場型、高天線增益5.2dBi、阻抗頻寬為3.03GHz-11GHz和小型化尺寸( ),皆符合超寬頻應用技術中MB-OFDM的規範(3.168-10.56GHz)。此外,本篇論文所介紹的介質共振器天線,因為介質共振器的材料簡易且易於製作,所以非常適用於一般工廠大量生產製造。

並列摘要


In this thesis, The new dielectric resonator antenna(DRA) is implemented by replacing the traditional dielectric resonator with a new material with low permittivity for ultrawideband (UWB) application is presented and studied. First, a hybrid structure DRA was designed with parasitic slot to enhance the impedance bandwidth. The flexible design consist of a coplanar waveguide (CPW) feed and parasitic slot. The bandwidth met the specification of MB-OFDM for the bandwidth(3.168-4.752GHz). Finally, another antenna structure was designed by changing the size of the dielectric resonator to satisfy the boundary conditions of the lower band. By applying the microstrip feed line, UWB and radiation characteristics are achieved. From the measured results, the proposed DRA showed good radiation pattern, high gain (5.2dBi), wide bandwidth (3.03-11GHz) and compact size ( ). The bandwidth met the specification of MB-OFDM (3.168-10.56GHz).The antenna system proposed in this work showed potential for mass production due to the simplicity of the design.

參考文獻


[2] A. Foudazi, H. R. Hassani, and S. M. A. Nezhad, “Small UWB Planar Monopole Antenna With Added GPS/GSM/WLAN Bands,”IEEE Trans. Antennas Propag., vol. 60, no. 6, pp. 2987-2992, Jun. 2012.
[3] R. A. S. Sheikhan et.al., “Planar monopole antenna employing back-plane ladder-shaped resonant structure for ultra-wideband performance,” Microwaves Antennas Propag., vol. 4, no. 9, pp. 1327-1335, Sep. 2010.
[4] Z. Tu et.al., “A Wideband Cavity-Backed Elliptical Printed Dipole Antenna With Enhanced Radiation Patterns,”IEEE Antennas Wireless Propag.Letters, vol. 13, no. 1, pp. 67-70, Jan. 2014.
[5] Y. He, W. He and H. Wong,“A Wideband Circularly Polarized Cross-Dipole Antenna,”IEEE Antennas Wireless Propag.Letters, vol. 12, no. 9, pp. 1610-1613, Dec. 2013.
[6] C. Deng,“Wideband Microstrip Antennas Loaded by Ring Resonators,”IEEE Antennas Wireless Propag.Letters, vol. 12, no. 9, pp. 1665-1668, Dec. 2013.

延伸閱讀