透過您的圖書館登入
IP:100.24.20.141
  • 學位論文

地下機械開挖之廣義式掘進模型與正規化可挖指數:直線推進為例

Generalized Cutting Model and Normalized Indices of Cuttability to Underground Mechanical Excavation – Case Studies of Straight Drives

指導教授 : 陳立憲

摘要


邇來國內隧道工程真築案例日增,施工方式常採用較安全且自動化之機械式掘削開挖,如山岳隧道、都會捷運、污水下水道等,在台灣地形特徵複雜多變下,施工時或多或少遭遇掘削不力之工程困境,且眾多研究地下開挖安全、穩定評估文獻報告中,機械式之掘削機制之學理研探較少,大多依日本或歐洲等規範及經驗,不必然適合台灣現地概況。 本研究以廣義式地質材料對機械式掘削機具之互制行為作統整分析,先就不同尺度之地下掘進工程(全斷面隧道開挖、潛盾、管推等工法)、工種(土壓式、泥水式、泥濃式)及地質(土、岩、卵礫石)之推力設計演算,以異況警戒之風險管理概念,在正常施工狀況下對整體掘削面盤中各個不同之每一刀頭貫切力進行加總並詳評群刀效應及刀頭磨耗影響,探討直線推力之合力,並設計推力之上、下限,進行廣義式隧道掘進推力系統分析;再者,針對推進力、扭矩及掘削速率之工進關係,利用量綱分析將掘進力系評估影響因子予以正規化,作為正規化工進圖之初步建置,並求取工進橢圓特徵值,作為掘削機制之可挖性指標研探。 綜觀本研究設計推力影響因子及施工異況檢討驗證。首先,設計問題探討單一刀頭貫切力加總與群刀效應之考量,掘進坡度及地下水造成浮力之影響,並以四種不同工程情況(前方阻抗受主動抑或被動側壓推擠、周側阻抗之機身或管身是否被地質包覆密貼與壓密)作為推力上、下限之評估以作為施工風險指標探討;再者,施工問題以國內潛盾隧道及管推工法案例調查,由正規化之掘削速率與推進力系工進圖,求得「工進橢圓特徵值」:〈圓心(O)、面積(A)、長、短軸(ax、by或ay、bx)〉,蓋可依此特徵分別作為研析〈地質群集、工況良窳、可挖變異〉以至於整體適確之探討。 由外業調查分析發現,針對地質材料為卵礫石層為例,在本研究直線推力計算總阻抗上、下限值,分別為3257.65kN及48.7kN,刀頭貫切力比率最大可佔總阻抗之17%;而「工進橢圓特徵值(O, A, a、b)」分別為[O(7.95, 106.53), A = 41.56, ay = 18.57、bx = 6.18]。最後,綜合外業調查將廣義式地質材料特徵之接觸域場貫切力加入推力計算,並提出可挖指標之標準作業程序之建議,應可作為現場推進工況良窳之判別。

並列摘要


To speed up construction of mass transit subway and the popularity rate of sewage, Taiwan's underground excavation works, especially for mechanical cutting cases, show an ascendant tendency. To develop a generalized solution for underground geological-mechanical interaction, this study presents an analytical estimation to deal with different mechanical cutting methods (tunnel boring machine, shield tunnel and pipe jacking), construction types (earth pressure balance, slurry pressure balance, thick-mud), and geological conditions (soil, gravel and rock) by normalizing their total thrust system using dimensional analysis. The case of straight-line thrust is then calculated for either wedge- or conical-typed cutters of tunneling machine. In this unified work, the upper bound and lower bound of trust are highlighted for the warning situations for risk assessment. Meanwhile, in-situ experimental results from shield tunneling and pipe jacking construction were used to examine this model and it shows a nice agreement between both. From this analytical approach, a proposed “oval-shaped cutting ellipsoid”, including its center (O), area (A), and long/short axis (ax/by, or ay/bx), can be used not only to estimate the functionality and efficiency of cutting machine adopted for tunnel project, but also to offer a warning information for inadequate cutting strategy. The results shows that the total thrust for upper and lower bounds are: 2299.28kN and 267.95kN compared with normal condition in gravel cases respectively, which the resultant contact force from cutters may take up to 84% of total thrust, and 「oval-shaped cutting ellipsoid (O, A, a, b)」were: O (7.95, 106.53), A = 41.56, ay = 18.57、bx = 6.18]. At last, indices of cuttability such as normalized thrust and torque can be used for valuable cutting references during underground mechanical excavation.

參考文獻


[13]胡光宇,複合式非破壞檢測佐探類岩材料於單刀與雙刀貫切之破壞機制,碩士論文,國立台北科技大學土木工程系,台北,2007。
[19]買冠誠,以非破壞光學干涉術研探岩材於斜剪過程之破壞演化,碩士論文,國立台北科技大學土木工程系,台北,2011。
[31]蔣緯鳴,下水道短管推進力分析,碩士蟹,國立中央大學土木工程研究所,桃園,2006。
[16]陳拓丞,應用因次分析法於奈米壓痕試驗之理論分析與數值模擬:殘留應力、基材效應與黏彈性質之研究,碩士論文,國立成功大學,臺南,2005。
[34]蘇億峰,磨耗效應與側向邊界對岩石貫破壞之值模擬,碩士蟹,國台科技大學土木工程系,台,2008。

被引用紀錄


陸嘉(2013)。電滲法運用於地下鑽掘包泥問題之可行性探討〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841%2fNTUT.2013.00155

延伸閱讀