透過您的圖書館登入
IP:13.58.150.59
  • 學位論文

光驅動無線感測器網路運用於居住環境舒適度量測研究

Light-Powered Wireless Sensor Networks Development for Thermal Comfort Measurement

指導教授 : 李達生
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


現今人們的生活有絕大部分的時間都在室內,且全球暖化危機使氣候詭譎多變,地處亞熱帶的台灣更因四面環海所形成的高溫高濕氣候,若在沒有良好舒適度的提供下,將影響人們的行動力、工作效率、飲食等諸多不適。隨著人類生活水準提高對室內空間舒適度的要求更為嚴謹。針對居住環境生活而言舒適度的調整相對重要。 針對影響居住環境舒適度之物理因子(溼度、室內溫度、風速)需要儀器量測而得知。傳統的量測方式大都以較為繁複且耗費時間與人力的溫度及濕度計來做亂數紀錄,現在大部分的量測模式是使用有線網路傳輸將資料傳送至主機做節省時間且有規律的紀錄溫濕度情形,這樣的量測方式需要從溫度、濕度感測器,拉線至主機,為取代傳統舒適度量測方式而提出一光驅動無線感測器網路。 對於放置在居家環境之無線溫、濕度感測器透過無線射頻傳遞方式將溫、濕度資料回傳至主機作更完整的居住環境之舒適度調整。由於無線感測器網路模組一般都需要電池供應感測器發送資料所需的用電,這會造成能源的污染,以光驅動無線感測器網路模組來取代傳統感測器網路的電池使用問題。因為此無線感測器網路的功耗相當微小,所以使用太陽光驅動太陽能板光電轉換後供應無線感測器網路的用電。 光驅動無線感測器網路,其系統包含了太陽能板光電轉換裝置、315MHz 無線射頻傳輸無線傳送、接收模組與感測器。感測器節點上整合IC封裝溫度感測器與相對濕度感測器,完成一簡單的光驅動無電無線感測器網路系統。訊號的傳遞方面是利用遠端電磁耦合來傳遞感測器測得之訊號,提供接收端收取資料;太陽能光電轉換將電儲存於電容器之後,當電容器所儲存之功率達到可供給IC行感測器透過RF傳送訊號之能量即會開始做數據傳輸。 本研究另外架構一組補償光源,當在光環境不充足或入夜之後針對太陽能板做光源補償,不影響光驅動無線感測器網路之正常運作。此補償光源為一裝置於轉台上的2×3W MR16 藍光LED投射燈配合完美的透鏡設計做為光源,可達到2.8公尺有效投射範圍,不僅能在缺乏光環境時有效對感測器節點充電,也較以往之50瓦鹵素燈節省約88%之補償光源之耗電量,達到不增加室內環境之熱負荷,減少室內空調負荷。

關鍵字

光驅動感測器網路 無線 PMV RF ISO7730

並列摘要


Nowadays people's life spends their majority of time indoor, and the Global warming crisis causes the climate vicissitude. Taiwan is located at the subtropics and surrounding by the oceans. Therefore, it has the high temperature and high humidity. If people do not have the appropriate comfort, it could affect people’s motion strength, the working efficiency, the diet, many ill and so on. People have reguested to gain better living experience, conqusently, adjusting indoor comfort is much more important. The influences of indoor environment comfort physical factors (temperature, humidity….etc.) need the instrumental measurements. Traditional gauging way uses thermometer and the hygrometer to make the records. The traditional gauging method uses wires through RJ45 data transmission from sensor nodes to host to achieve the orderly recording temperature and humidity, but it could make more complex when setting up the wires. Replacing tradition gauging way, the new method that has been developed is called light-powered wireless sensor networks. The wireless temperature and humidity sensor nodes placed in indoor environment through radio frequency transmission the temperature and humidity data to host for moreover completing adjustment of indoor comfort. As the wireless sensor network modules that send information needs batteries, this will lead to energy contamination; so we developed light-powered wireless sensor networks substitute tradition sensor node on battery using question. Because the wireless sensor nodes power consumption is very small, therefore,use of solar panels supply wireless sensor nodes power consumption. A light-powered sensor networks system includes solar panels photoelectric conversion device, 315MHz RF chip, wireless transmission, receive module, and sensor node module. This sensing node integrates an IC-based temperature sensor, the radiation thermometer, and the relative humidity sensor to complete light-powered wireless sensor network systems. The signal communication protocol is to use Far-Field EM Wave Coupling to transmit data to receiver; after irradiation of solar panels will be stored power in the capacitor. When capacitor stored enough power for RF transmission data will begin to transfer data. When the light intensity is not sufficient at daylight or at night, we have structured spotlight to compensate low light in order to charge the solar panels. We developed the spotlight which has 2 LEDs and a dual axis tilt platform can power the distributed nodes in the distance up to 2.8 meters. Not only compensated indoor insufficient light intensity but also can save about 88% of power consumption than traditional 50 watt quartz-halogen reached that do not increase indoor heat load and reduced indoor air-conditioning power consumption.

並列關鍵字

Light-powered sensor networks Wireless PMV RF ISO7730

參考文獻


[20] 朱耀明、林財世,「淺談RFID 無線射頻辨識系統技術」,生活科技教育月刊,第38卷,第2期,2005,第73-87頁。
[4] W. L. Tse, W. L. Chan, “Real-time measurement of thermal comfort, Measurement (2006)”, doi:10.1016/j.measurement.2006.07.005.
[9] Busch, J. F.; Thermal responses to the Thai office environment, ASHRAE Transactions 96 (1), PP.859-872, (1990).
[10] Humphreys, M. A.; “Field studies of thermal comfort compared and applied,” Energy, Heating and Thermal Comfort, Building Research Series, The construction press, Vol. 4, pp.237-265, (1978).
[11] Auliciems A.( 1981) Towards a psycho-physiological model of thermal perception, International Journal of Biometeorology, No.25(2):109-122.

被引用紀錄


林敬博(2011)。應用CFD模擬技術決定RFID感測器在會議室內空調系統之最佳置放位置〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2011.00320
蔡宗佑(2012)。整合通訊與PLC控制系統應用於變冷媒流量空調系統之舒適度研究〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-1708201216064100

延伸閱讀