透過您的圖書館登入
IP:3.146.221.52
  • 學位論文

混摻奈米顆粒半固態電解質應用於染料敏化太陽能電池之研究

Nano-composite Gel Electrolytes for Dye-sensitized Solar Cells

指導教授 : 余琬琴

摘要


本研究利用數種無機奈米粒子混摻入以PMII為主的液態電解質,以製備半固態電解質,期望藉由改變DSSC元件的離子傳導機制,在提升電解質黏度同時亦提升元件光電轉換效率。 本實驗先行調整I2及LiI濃度找出最佳的液態電解質配方,再混摻ZnO、TiO2、SiO2奈米顆粒進行膠化,製備出不同種類的半固態電解質,分析其中不同的奈米顆粒、混摻之奈米顆粒比例、離子擴散係數與光電轉換效率的影響。研究結果顯示,於液態電解質中加入ZnO奈米粒子,除了降低氧化鋅光陽極與電解質之間的阻抗而增加電池的光電流值(JSC)之外,亦可減少電子的再結合機率而提升開路電壓(VOC)。在混摻濃度為35 wt.% ZnO 奈米粒子時,於入射光強度100 mW/cm2之下,光電轉換效率可達4.17 %,相較於液態電解質的轉換效率3.10 %,共提升了34 %。在長效性測試中,電池元件在室溫下放至150天仍可保持原有95%的光電轉換效率。

並列摘要


In this study, various nanoparticles were employed to solidify 1-propyl-3-methylimidazolium iodide (PMII) based liquid electrolytes in dye-sensitized solar cells (DSSCs). A guideline to prepare high-performance clay-like or gel-like electrolytes having high content nanoparticles was prepared for DSSCs. We aimed at fabricating ionic paths between nanoparticles by chemical bondings. Photovoltaic performances of DSCs containing these quasi-solid state electrolytes were studied as well as the influence of solvents, redox couple, additives and the content of nanoparticles. Efficiencies of 4.17% was recorded for the AN-based electrolytes solidified by 35.0 wt.% ZnO nanoparticles, under illumination of simulated AM 1.5 (100mW/cm2). From the electrochemical impedance spectroscopy (EIS) analysis, it was found that the enhanced conversion efficiencies of the DSCs were associated with the decrease in charge transfer resistance at the ZnO/dye/electrolyte if we used the ZnO nanocomposite gel electrolyte.On the other hand, ZnO nanoparticles can inhibit the charge recombination, enhancing the open-circuit voltage of the cells. The DSSCs with a ZnO solidified electrolyte showed endurance of stability superior to that of a pure liquid electrolyte.

參考文獻


41. 林俊民,電化學沉積氧化鋅薄膜應用於可撓式染料敏化太陽能電池之研究,碩士論文,台北科技大學有機高分子研究所,台北,2012。.
42. S. O. Kasap, Optoelectronics and photonics: principles and practices, United Stated of America: pearson education inc, 2001.
1. B. O'Regan and M. Gratzel, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films," Nature, vol. 353, 1991, pp. 737-740.
4. M. A. Green, K. Emery, Y. Hishikawa and W. Warta, "Solar cell efficiency tables (version 37)," Prog. Photovolt: Res. Appl., vol. 19, 2011, pp. 84-92.
5. H. F. Lee, J. J. Kai, P. C. Liu, W. C. Chang, F. Ouyang and H. Chan, "A comparative study of charge transport in quasi-solid state dye-sensitized solar cells using polymer or nanocomposite gel electrolytes," J. Electroanal. Chem., vol. 687, 2012, pp. 45-50.

延伸閱讀