透過您的圖書館登入
IP:18.116.62.45
  • 學位論文

離子性高分子與金屬複合材料致動元件應用於植入式藥物釋放系統之研究

Application of Ionic Polymer-Metal Composites (IPMC) Actuator Application of Ionic Polymer-Metal Composites (IPMC) Actuatr for Implantable Drug Delivery System

指導教授 : 謝明發

摘要


離子性高分子與金屬複合材料(IPMC)是ㄧ種電致動材料,因為它的質量輕且能在低電壓下產生大於100 %的彎曲形變,已經廣泛的研究應用在各種領域中。本研究利用IPMC的電致動特性設計藥物釋放裝置,並探討其作為植入式藥物釋放系統的可行性。研究內容分為四個部份:(一)分別製作不同厚度、長寬比及兩種金屬電極的IPMC薄膜,(二)測量IPMC薄膜的電致動性質;包含彎曲形變(位移)及力量,(三)利用閉迴路的PID系統控制IPMC的致動表現,解決IPMC在開迴路下致動表現沒有再現性的問題,(四)設計與製作植入式的藥物釋放裝置;依IPMC的長寬比及致動表現設計及製作IPMC藥物釋放裝置並評估藥物釋放性能。本研究製作三種不同厚度(200、100及50 μm)、兩種不同長寬比(3×1、3×0.5 cm2)的黃金及白金IPMC薄膜,在掃描式顯微鏡下觀察到兩種金屬電極層結構的差異。電致動測試結果中顯示黃金電極IPMC比白金電極IPMC表現較一致性,其位移量隨薄膜厚度增加而減小,也隨長寬比增加而減小,但輸出力量則相反,原因為膜本身的機械強度;會使輸出力量隨薄膜厚度增加而增加,也隨長寬比增加而增加,其中200 μm膜厚的IPMC致動器之力量輸出最大(約0.8 克重),將200 μm膜厚IPMC致動器以PID控制程式驅動下,在步階或是追蹤響應中IPMC薄膜都能夠達到1、2、3公分的位移量預設值及低波形失真的性能。在藥物釋放裝置的測試方面,本研究以IPMC薄膜的輸出力量設計可與明膠水膠材料結合的藥物釋放裝置。藥物釋放測試中並沒有辦法成功推擠水膠滴出溶液來,初步推論原因為IPMC致動器的輸出力量不足。未來將進一步討論IPMC與水膠結合的裝置之藥物釋放測試,先確定水膠材料需要多少力量達到擠壓出水的效果,再以增加薄膜厚度促進IPMC的力量性質,以達到IPMC能夠致動水膠的可行性,進而朝藥物釋放的測試來進行。

並列摘要


Ionic polymer-metal composites (IPMC) are a kind of electroactive polymer (EAP) that has been used for various applications, such as artificial muscles, sensors and actuators, because of its light weight and ability to make more than 100% bending deformation under low driving voltage. In this study, an IPMC actuator was incorporated into a self-designed device for application as an implantable drug delivery system. First, IPMC films with different thickness, dimensions and metal electrodes were constructed. The second step required a basic measurement of the IPMC actuation performance, including displacement and output force. A third step utilized a closed-loop PID controller to solve the unrepeatable characteristics of an IPMC in the open-loop position response. Finally, an IPMC actuator was incorporated into a design of a drug delivery device and its drug delivery performance consequently studied. A variety of IPCM films having different thickness (200、100 and 50 μm)、dimensions (3×1、3×0.5 cm2) and metal materials (Au and Pt) were successfully fabricated. A difference in surface morphology was observed by SEM between gold and platinum electrodes. The actuation performance results showed that the gold electrode was better then platinum electrode of IPMC. Furthermore, as the thickness of the IPMC film increased, the bending displacement decreased but the output force result is opposite to the displacement because the stiffness of IPMC film. Moreover, the performance results both increased as the applied voltage was increased. With the use of the PID control, results showed an improvement of the performance ability that can reach the setpoint of 1, 2, 3 mm. Lastly, drug delivery tests combining hydrogel, IPMC and drug delivery device revealed unsatisfactory results. In the future, a more in depth discussion about the device performance in drug release test, like how much force can make hydrogel works, increase the thickness of IPMC films to improve the performance.

參考文獻


26. 黃振宏. Nafion溶液成膜的物理特性與形態學研究,元智大學化學工程學系,碩士論文,. 2003.
2. Low LM, Seetharaman S, He KQ, Madou MJ. Microactuators toward microvalves for responsive controlled drug delivery. Sensors and Actuators B: Chemical 2000;67(1-2):149-160.
3. Bar-Cohen Y. Electroactive polymers (EAP) as actuators for potential future planetary mechanisms. Evolvable Hardware, 2004 Proceedings 2004 NASA/DoD Conference on; 2004; 2004. p. 309-317.
4. Yoon WJ, Reinhall PG, Seibel EJ. Analysis of electro-active polymer bending: A component in a low cost ultrathin scanning endoscope. Sensors and Actuators A: Physical 2007;133(2):506-517.
6. Sadeghipour K, Salomon R, Neogi S. Development of a novel electrochemically active membrane and 'smart' material based vibration sensor/damper. Smart Materials and Structures 1992;1 172-179.

被引用紀錄


吳佳奇(2010)。離子高分子金屬複合材料之微幫浦組裝 及其電致動現象模擬〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201001116

延伸閱讀