透過您的圖書館登入
IP:18.222.67.251
  • 學位論文

超淺接面單分子層摻雜之鍺基無接面電晶體 及超淺摻雜界面製作

Germanium-based Junctionless Transistor with Utral Shallow Junction Formation

指導教授 : 陳建亨

摘要


本論文研究將單分子層摻雜應用於鍺基板上。首先,希望藉由石英與載片不同的排列方式,在相同的微波功率下,達到較好的活化的效果。但我們發現無法利用微波退火,進行單分子層摻雜的製程,因此我們改用快速升溫熱退火及雷射退火來達到我們的目標。 我們先蝕刻出通道,接著利用單分子摻雜,在表面形成非破壞性摻雜的超淺接面,使其成為無接面的結構。接著我們使用快速升溫熱退火在700 oC的溫度下,將摻雜的磷擴散至通道內,搭配後續使用70 W的CO2雷射退火,達到較低的製程溫度和修復粗糙的表面。 透過二次離子質譜儀和四點探針,我們確認磷成功的擴散至基板表面深度15奈米內。並在距離表面3奈米內形成最高濃度達6×1020 atom/cm-3 的超淺接面摻雜。

並列摘要


When the depth of the channel length is scales down, will lead to cut-in current add at junction depletion region. As a result, the threshold voltage is reduced. The best approach to avoid this phenomenon is ultra-shallow junction. Process by microwave annealing , different sequence to set quartz and susceptor have an effect on temperature. Germanium has less thermal budget then Silicon. We want conduct experiments at same power to achieve better result of dopant activation. But microwave annealing didn’t work on monolayer doping. That’s the reason why we chose RTA and CO2 laser annealing to conduct experiment. By the combination of RTA and CO2 laser annealing, the depth of the n+/p junction was only 15 nm and the peak concentration over 6×1020 cm-3. The surface roughness was also improved by the CO2 laser annealing.

參考文獻


參考文獻
[1] Ferrari, Andrea C., et al. "Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems." Nanoscale 7.11 ( 2015 ) : 4598-4810.
[2] Lin, L., K. Xiong, and J. Robertson. "Atomic structure, electronic structure, and band offsets at Ge: GeO: GeO2 interfaces." Applied Physics Letters 97.24 ( 2010 ) : 2902.
[3] Ionescu, Adrian M. "Electronic devices: nanowire transistors made easy." Nature nanotechnology 5.3 ( 2010 ) : 178-179.
[4] 王貽泓“單分子層摻雜的研究及其應用”,國立交通大學,碩士論文,2013

延伸閱讀