透過您的圖書館登入
IP:18.117.137.64
  • 學位論文

電子式基因微陣列晶片與應用電路研究

Research on Electrical MicroArray Chips and Application Circuit

指導教授 : 蔡章仁
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究著重於發展出一適於使用電子式量測的基因陣列晶片,利用單股去氧核糖核酸(DNA)互補雜交的特性,在晶片上電容陣列之各電容裡固定不同的DNA序列,即可進行多點不同DNA序列的判斷。實驗中以直徑15 nm金奈米粒子標定有雜交的DNA序列,使有無雜交的DNA序列造成受測電容明顯不同的介電係數,並根據電容量測而推測DNA有無雜交。 初期研究實驗上使用多參數陣列式基因晶片。此型晶片主要目的在於,測得晶片上電極對尺寸的最佳條件,以利往後單參數陣列式晶片的設計。故多參數晶片為了降底背景電容的影響,會使用不同於矽基板的玻璃基板以保證參數所得的正確性。單參數晶片實際為電容陣列,在製程上使用三道金屬製程。為了避免晶片本身寄生電容造成量測上的錯誤,在晶片的金屬層1與金屬層2間使用BCB(BenzoCycloButene)取代傳統的二氧化矽 (SiO2)當作金屬隔離層;金屬層2與金屬層3間的隔離層一樣採用SiO2以提供化學製程的相容性。 量測DNA雜交電容值的方法上,多參數陣列式基因晶片主要搭配LCR Meter來量測。單參數陣列式基因晶片主要以自製的量測電路做量測。根據多參數晶片測得的結果,DNA雜交後的電容依然在fF這個數量級,因此為了讓外部量測電路可量測到晶片較低的電容值,量測時會以多點並聯電極對的方式加大受測電容值。 研究上成果顯示,使用多參數基因晶片在DNA有雜交的情況下,與空白晶片電容相比較,電容最大可提升62.35 %;而DNA有雜交電容與DNA無雜交電容相比,電容最高提升為18.47 %。使用單參數基因晶片,DNA有雜交電容與DNA無雜交電容相比,電容最大可提升20.31 %。

並列摘要


This research focuses on developing an electrical measurement of Array Gene Chip. Utilizing the characteristic of hybridization of complemented single strand deoxyribonucleic acid (DNA), we can distinguish different DNA sequences by immobilizing different DNA sequences on different positions of Capacitance-Array-Chip. During the experiments, we labeled the Gold Nanoparticles (Diameter = 15 nm) on hybridized DNA sequences to bring obvious changes of dielectric constant and compared those with non-hybridized DNA to speculate whether the DNA hybridized or not. We used the multi-parameter array-type genetic chip on the experiment in early study. This type’s main purpose was to examine optimal chip’s electrode conditions and use it to design the single-parameter array-type genetic chip. Therefore, we used glass substrates which are different from silicon substrates to lower the influences of background capacitance and guarantee the correctness of parameters extracted from those. Single-parameter chip is really a capacitance array made by 3 metal-layers in process. In order to avoid the mistakes caused by chip’s parasitic capacitance in measuring, this chip replaced traditional silica (SiO2) with BenzoCycloButene (BCB) between metal-l and metal-2 as the metal isolation, and also adopted the same material SiO2 to provide the compatibility of chemical process between metal-l and metal-2. By the method of measuring DNA-hybridization capacitance, multi-parameter array-type genetic chip mainly works with LCR Meter. Single-parameter array-type genetic chip mainly adopts our developing measuring circuit on the experiment to measure capacitance. According to the experimental results of using multi-parameter chip, the capacitance after DNA hybridization is still in the order of fF. Therefore, in order to make sure outside circuit system can measure the lower capacitance on the chip, we will parallel more electrodes to magnify values of measured capacitance. Experiment results with multi-parameter gene chips showed that the capacitance values in the electrode pairs with DNA hybridization were enhanced by 62.35 % from blank electrode pairs. The maximum capacitance difference between the electrode pairs with hybridization and those without hybridization is 18.47 %. With single-parameter gene chips, the capacitance difference between the electrode pairs with hybridization and those without hybridization could be up to 20.31 %.

參考文獻


[1] D. J. Lockhart and E. A. Winzeler, “Genomics, gene expression and DNA arrays,” Nature, vol. 405, pp. 827-836, June 2000.
[2] B. Foultier, L. Moreno-Hagelsieb, D. Flandre, and J. Remacle, “Comparison of DNA detection methods using nanoparticles and silver enhancement,” IEE Proc.-Nanobiotechnol., vol. 152, pp. 1-12, 2005.
[3] S. J. Park, T. A. Taton, and C. A. Mirkin, “Array-Based Electrical Detection of DNA with Nanoparticle Probes”, Science, vol. 295, pp. 1503-1506, 2002.
[5] C. Berggren, B. Bjarnason, and G. Johansson, “Capacitive Biosensors”, Electroanalysis, vol. 13, pp. 173-180, 2001.
[8] S. Grimnes and O. G. Martinsen, Bioimpedance And Bioelectricity Basics, first edition, New York: Academic Press, 2000. ch. 3.

延伸閱讀