透過您的圖書館登入
IP:18.232.188.122
  • 學位論文

純化程序對奈米碳管表面特性影響之研究

指導教授 : 秦靜如
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


隨著奈米科技的發展,奈米材料的結構特性與應用,成為目前科技發展研究的重點之ㄧ。奈米碳管的發現對於奈米材料的發展具重大的影響,由於奈米碳管優異的物理與化學特性,因此具有相當大的應用潛力。 合成後的奈米碳管,會含有大量的金屬觸媒顆粒以及碳不純物,影響後續奈米碳管的應用,所以必須先經過純化程序以提高奈米碳管的純度,然而純化程序會對奈米碳管的物理與化學特性造成改變。本研究藉由不同氧化劑與氧化劑濃度對奈米碳管進行純化,探討純化前後對於奈米碳管表面特性的影響。研究結果顯示,純化程序改變奈米碳管表面物理與化學性質,不同氧化劑純化後奈米碳管的純度,以硝酸為最高,鹽酸次之,其次為過氧化氫,由於硝酸純化後奈米碳管的金屬含量明顯降低,純度因而提升。由氮孔隙吸附分析發現,不同氧化劑純化後奈米碳管表面積與微孔體積皆有增加的趨勢,僅9M 硝酸純化後奈米碳管為例外,氧化劑濃度越高,對奈米碳管表面結構破壞也越大。經傅立葉紅外光譜分析發現,未經處理之奈米碳管表面並無官能基存在,純化後奈米碳管表面化學性質改變,並在缺陷處產生羧基、酚基、羰基三種官能基,不同官能基的含量未必隨著氧化劑濃度增加而增加。實驗結果顯示,純化程序對奈米碳管表面特性造成改變,不同氧化劑純化奈米碳管的影響也不同。

並列摘要


The objective of this work is to study the influences of the oxidant and their concentration on the physical and the chemical properties of the purified CNTs. The properties of the raw and the purified CNTs were examined by thermal gravimetric analysis (TGA), Raman spectroscopy, nitrogen adsorption, field emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectroscopy (FTIR), and Boehm’s titration. The TGA results showed that HNO3 can effectively remove amorphous carbon and metal particles while HCl and H2O2 have limited removal efficiency. Raman spectra showed that the G/D ratio of the CNTs increased when the CNTs were purified by HNO3, and that decreased when the CNTs were purified by both HCl and H2O2. Generally speaking, HNO3 is the most effective oxidant, followed by HCl, and H2O2 is the least. It was also found that the total surface area and the micropore volume were increased in all oxidation conditions used in this work, except 9 M HNO3. This was because the CNTs were severely damaged by 9M HNO3 and bundled together. Purifications also introduce functional groups on the CNTs, such as carboxylic, lactone, and phenolic groups. However, the amount of introduced functional groups showed no correlation to the concentration of the oxidation agents.

參考文獻


[6] 黃建良、黃淑娟,「奈米碳纖與奈米碳管合成技術簡介」,化工,第50
[3] 洪昭南、徐逸明、王宏達,「奈米碳管結構及特性簡介」,化工,第49
[33] 許世杰、李孟珊、盧重興,「奈米碳管吸附異丙醇廢氣之研究」,第二 屆環境保護與奈米科技學術研討會,清華大學,2005
[30] Richard Q. Long, and Ralph T. Yang, “Carbon nanotube as superior
[17] Konstantin B. Shelimov, Rinat O. Esenaliev, Andrew G. Rinzler, and

被引用紀錄


白晉瑋(2013)。物理改質奈米碳管與石墨烯混摻製作染料敏化太陽能電池之聚丙烯反電極〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841%2fNTUT.2013.00222
黃智宏(2010)。聚醯亞胺/矽烷耦合劑改質多壁奈米碳管之奈米材料的性質探討〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841%2fNTUT.2010.00332
Yeh, F. H. (2009). 轉印以介電泳力排列改質化奈米碳管之技術研究 [master's thesis, National Taipei University of Technology]. Airiti Library. https://doi.org/10.6841%2fNTUT.2009.00400
劉亞蟬(2011)。奈米碳管氧化反應動力學研究〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840%2fcycu201100614
劉韋呈(2011)。染料光分解與吸附於奈米碳管之光譜研究〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840%2fcycu201100554

延伸閱讀