透過您的圖書館登入
IP:18.217.220.114
  • 學位論文

光達及太陽輻射儀之應用:2005中壢氣膠光學垂直特性及邊界層高度之變化

指導教授 : 林能暉
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究旨在探討太陽輻射儀及光達之應用,利用2005年於中壢之觀測資料,反演邊界層高度與消光係數垂直剖面,並配合綜觀天氣分類、地面觀測資料及氣流軌跡資料等探討中壢氣膠光學垂直特性在不同季節、不同天氣型態下之特徵。 根據太陽輻射儀觀測之440 nm氣膠光學厚度(τ440 )月平均顯示2005年氣膠光學厚度高值出現在春季(0.814 ± 0.227),夏季 (0.548 ± 0.273) 次之,冬季 (0.442 ± 0.227) 最低。2005年中壢Ångström exponent月平均變化範圍在1.051 - 1.259之間,顯示各月份垂直氣柱中粗粒與細粒氣膠比例維持相當穩定的狀態。配合綜觀天氣型態分類發現2005年中壢氣膠光學厚度在B (高壓中心偏高緯度,台灣以東風為主) 、R (高壓迴流)、M (西南季風)、T2(颱風中心位在台灣西北方) 等型態下之平均值較高,τ440之平均值在0.68 – 0.82 之間,而C (寒潮爆發)及T3 (颱風中心位在台灣西南方) 等型較低,τ440分別約為0.3及0.04。 此外,在R型、T2型、T0 (颱風在1000 km 外) 型以及T4 (颱風中心位在台灣東南方) 等型天氣型態下,平均邊界層頂高度分別約為0.65 km、0.78 km、0.68 km及 0.72 km,邊界層內氣膠光學厚度之貢獻佔垂直氣柱總消光作用之比例分別約為57 %、27 %、58 % 及 50 %。R型及T4型態下,地表懸浮微粒(PM10及PM2.5)濃度與τ440相關係數均高於以全年資料所估算之相關係數,顯示在此兩種天氣型態下低層垂直氣柱中氣膠較能反應出垂直氣柱中氣膠光學厚度之變化情形。

關鍵字

太陽輻射儀 光達

並列摘要


The purpose of this study is to characterize the aerosol optical properties measured by the sunphotometer and micro-pulse lidar in Chung-Li during the year of 2005. Combining with meteorological data, backward trajectories and ground level particle mass concentrations, this study also attempt to investigate the characterization of aerosol optical properties with respect to different seasons and weather conditions. The maximum and minimum values of monthly mean aerosol optical depths at 440 nm occurred in spring (0.814 ± 0.227) and winter (0.442 ± 0.227), respectively. The monthly mean of Ångström exponent varied between 1.051 and 1.259, indicating a relatively stable ratio of the columnar coarse to fine particle size. Moreover, it was found that the averaged aerosol optical depth was higher under the weather conditions B ( high pressure center in high latitude, and easterly wind in Taiwan ), R (outflow of high pressure system to Taiwan ), M (Southwesterly monsoon) and T2 ( the typhoon’s center located at the northwest side of Taiwan), and in a range between 0.68 and 0.82 . In contrast it was lower under the weather conditions C (cold-air outbreak) and T3 (the typhoon’s center located at the southwest side of Taiwan), with the value of 0.3 and 0.4, respectively. In addition, the aerosol particles within the boundary layer contributed about 57% of the columnar aerosol optical depth under the weather condition R. Relatively higher correlation coefficient between ground-level particle concentration and aerosol optical depth reveals that the former dominated the later in the lower troposphere.

並列關鍵字

Sunphotometer Lidar

參考文獻


王聖翔,2006:亞洲生質燃燒氣膠對區域環境與大氣輻射之衝擊及對氣象場的反饋作用。國立中央大學大氣物理研究所博士論文,中壢。
Ackerman, A. S., O. B. Toon, D. E. Stevens, A. J. Heymsfield, V. Ramanathan, and E. J. Welton, 2001, Reduction of tropical cloudiness by soot, Science, 288, 1042-1047.
彭啟明,1994:台灣北部地區混合層高度的觀測與模擬。國立中央大學,大氣物理研究所碩士論文,中壢。
Campbell, J.R., D.L. Hlavka, E.J. Welton, C.J. Flynn, D.D. Turner, J.D. Spinhirne, V.S. Scott, and I.H. Hwang, 2002, Full-time, Eye-Safe Cloud and Aerosol Lidar Observation at Atmospheric Radiation Measurement Program Sites: Instrument and Data Processing, J. Atmos. Oceanic Technol., 19, 431-442.
Eck, T. F., B. N. Holben, O. Dubovik, A. Smirnov, P. Goloub, H. B. Chen, B. Chatenet, L. Gomes, X.-Y. Zhang, S.-C. Tsay, Q. Ji, D. Giles, and I. Slutsker, 2005, Columnar aerosol optical properties at AERONET sites in central eastern Asia and aerosol transport to the tropical mid-Pacific, J. Gerphys. Res., 110, D06202, doi:10.1029/2004JD005274.

被引用紀錄


徐睿鴻(2007)。鹿林山與中壢氣膠光學垂直特性之監測與比較〔碩士論文,國立中央大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0031-0207200917350489
鄭瑞仁(2011)。大氣氣膠消光係數修正對都市氣膠光學尺度影響〔碩士論文,國立中央大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0031-1903201314430433
李慶偉(2014)。中壢地區光達消光散射比之長期分析與污染物關聯性研究〔碩士論文,國立中央大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0031-0412201512030933

延伸閱讀