透過您的圖書館登入
IP:3.142.196.27
  • 學位論文

具45°矽微反射面之 2x2 非共平面高分子聚合物波導光路

2x2 Noncoplanar Polymer Waveguide based on Silicon Bench with 45° micro reflector

指導教授 : 伍茂仁
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文提出一個具矽基45˚微反射面之高分子聚合物波導光路,由兩個Y型分光波導上下相疊而成,並搭配45˚反射面達到三維空間的轉折光路。各別Y型波導輸入端寬高為60 × 30 μm2,加上中間厚度約3 μm之隔離層,最後形成輸入端寬高為60 × 63 μm2,輸出端部份為兩組30 × 50 μm2之輸出端點。輸入光源為850 nm之雷射導入直徑62.5 μm之多模光纖,以單一光源同時輸入兩組Y型分光波導,最後輸出2 × 2共4個輸出點。 整體光路之架構以單一光源導入上下兩組Y型波導後,於輸出端形成2  2的輸出光點,最後經過45˚微反射面形成90˚光路轉折,導入感光耦合元件中。 本研究完成非共平面之長直波導與具45˚反射面之高分子聚合物光路之光學模擬、製程與光學特性量測,以多模光纖作為輸入光源時,可看到四個清淅之光點,各光輸出口有4~5%的光耦合效率。

並列摘要


We demonstrate an optical circuit combines with two Y splitters in different layer to realized a 2x2 non-coplanar polymer waveguide based on Silicon Bench with 45° micro reflector to realized a complicate optical interconnect system by more than one optical path layer. The proposed optical circuit includes two Y-splitters to have a 1 × 2 input port and 2 × 2 output port, and a 45° micro reflector to translate optical path from vertical to horizontal after propagate through the splitter to realize a 3-dimension optical path.. The 45°reflector is fabricate with a single anisotropic wet-etching process, and the polymer optical circuit is fabricate with spinning and lithography, all of these process are common and mature technique semiconductor manufacturing technology. According to the optical simulated and experiment result, in the 2 × 2 output ports with multi-mode fiber input, coupling efficiency of each channel between 4.2% and 5.5%.

並列關鍵字

polymer waveguide non-coplanar

參考文獻


[1] Miller, D.A.B., Rationale and challenges for optical interconnects to electronic chips. Proceedings of the Ieee, 2000. 88(6): p. 728-749.
[4] Miller, D.A.B., Device Requirements for Optical Interconnects to Silicon Chips. Proceedings of the Ieee, 2009. 97(7): p. 1166-1185.
[7] M. W. Haney “Energy-per-bit Advantages of Chip-scale Hybrid-integrated Optical Interconnects using Surface-normal Electro-aborption MQW Modulators” IEEE Optical Interconnects Conference (2013).
[2] Ho, R., K.W. Mai, and M.A. Horowitz, The future of wires. Proceedings of the Ieee, 2001. 89(4): p. 490-504.
[3] Miller, D.A.B., Physical reasons for optical interconnection. International Journal of Optoelectronics, 1997. 11(3): p. 155-168.

延伸閱讀