透過您的圖書館登入
IP:3.133.160.156
  • 學位論文

應用時雨量資料估算降雨沖蝕指數-以高雄屏東地區為例

Application of Hourly Rainfall Data to Estimate the Rainfall Erosivity Index- A Case Study of Kaohsiung and Pingtung Area

指導教授 : 李明熹

摘要


近年極端降雨事件發生頻繁,造成臺灣坡地土砂災害問題日益嚴重,土壤沖蝕推估漸為一重要課題。目前世界各地最普遍使用的土壤沖蝕公式為Wischmeier and Smith(1978)所提之通用土壤流失公式(Universal Soil Loss Equation, USLE),公式中又以降雨沖蝕指數(Rainfall erosivity index,R)最難決定,因為受各區降雨量、降雨延時及降雨型態等特性影響,其值是由降雨動能(E)與最大30分鐘降雨強度(I30max)相乘而來(Wischmeier and Smith,1958),故需要較短時間(小於30分鐘)間距及長統計年數的雨量資料進行計算,然而很多地區缺乏此類型的雨量資料,只有小時、日或是月雨量資料,因此如何利用小時雨量資料進行降雨沖蝕指數推估,簡化繁複的計算過程,為本研究探討重要課題。 本研究蒐集高雄及屏東地區51個中央氣象局雨量站2002~2012年十分鐘雨量資料,並依據Wischmeier and Smith(1958)定義分割單場有效降雨事件共計17,538場,分析發現約有35個雨量站之最大單場降雨量及最大單場降雨沖蝕指數皆發生於2009年8月莫拉克颱風,顯示其對臺灣高雄及屏東地區影響很大。在單場降雨的動能E10和E60迴歸關係的部分,高雄地區關係式為E10=1.04E60,判定係數(r2)為0.99,屏東地區關係式為E10=1.05E60,判定係數(r2)為0.99,整個高屏地區關係式為E10=1.04E60,判定係數(r2)為0.99,各站轉換係數趨近於1,顯示不同時距雨量資料對於降雨動能之計算影響不大,並非影響降雨沖蝕指數變化主因。單場最大30分鐘降雨強度I30max和最大時降雨強度I60max迴歸分析,結果高雄地區關係式為I30max=1.51I60max,判定係數(r2)為0.90,屏東地區關係式為I30max=1.59I60max,判定係數(r2)為0.91,高屏地區關係式為I30max=1.56I60max,判定係數(r2)為0.90,其中各站轉換係數介於1.30-1.76之間,由此顯示不同時距雨量資料對最大降雨強度之計算影響很大,亦是影響降雨沖蝕指數變化主因。單場降雨沖蝕指數R30j和R60j經由迴歸分析找出兩者之間的轉換係數(αRj),高雄地區αRj為1.25,判定係數(r2)為0.97,屏東地區αRj為1.41,判定係數(r2)為0.94,高屏地區αRj為1.31,判定係數(r2)為0.95。最後本研究為增加公式的便利性及應用性,以年降雨沖蝕指數進行分析,得出高雄地區年降雨沖蝕指數R30y和R60y之轉換係數(αRy)為1.36,判定係數(r2)為0.93,屏東地區αRy為1.55,判定係數(r2)為0.94,高屏地區αRy為1.44,判定係數(r2)為0.92。本研究成果可供相關單位進行土壤沖蝕評估之參考。

並列摘要


The 30-min rainfall erosivity index (R30) is commonly used in the Universal Soil Loss Equation for predicting soil loss from agricultural hillslopes. R30 values are calculated from breakpoint rainfall information obtained from continuous recording rain gauge charts; however, in many places in Taiwan and other parts of the world, detailed chart-recorded rain gauge data relative to storm intensities are not readily available, whereas hourly rainfall is readily available. A simple method for estimating the rainfall erosivity index R30 by using the value of R60 calculated from the rainfall kinetic energy (E60) and maximum intensity (I60max) measured at multiple rainfall stations was established. This study involved calculating R30 and R60 by using 10- and 60-min data obtained from 51 rainfall stations in Southern Taiwan. The results show that the kinetic energy values derived using the two sets of data are related as E10 = 1.04E60 (r2= 0.99). In addition, the maximum rainfall intensity values of 30- and 60-min intervals are related as I30max = 1.56I60 max (r2= 0.90). The R30j associated with a rainfall event and R60j associated with a rainfall event are related as R30j = 1.31R60j (r2= 0.95). Finally, the annual average R30y and annual average R60y are related as R30y = 1.44R60y (r2= 0.93). The 60-min rainfall data can be successfully mused to estimate rainfall erosivity where no finer time resolution data are available and there was a marked improvement in predictions between the 60-min data and the 30-min data. The method is expected to be of significant benefit in future studies concerning the effects of climate change.

參考文獻


9.楊文仁、范正成、張于漢,2005,「臺灣北部地區最大三十分鐘降雨強度之分析及預測」,農業工程學報,第51卷,第3期,第1-10頁。
11.盧光輝,1999,「降雨沖蝕指數之修訂」,中華水土保持學報,第30卷,第2期,第87-94頁。
1.吳嘉俊,王阿碧,1996,「屏東老埤地區雨滴粒徑與沖蝕動能之研究」,中華水土保持學報,第27卷,第2期,第151-165頁。
3.俞俊賓,2008,曾文水庫集水區年降雨沖蝕指數與年降雨量關係之研究,碩士論文,國立成功大學,水利及海洋工程研究所,台南。
19.Panos Panagos, Pasquale Borrelli, Jonathan Spinoni, Cristiano Ballabio, Katrin Meusburger, Santiago Beguería, Andreas Klik, Silas Michaelides, Sašo Petan, Michaela Hrabalíková, Preben Olsen, Juha Aalto, Mónika Lakatos, Anna Rymszewicz, Alexandru Dumitrescu, Melita Perˇcec Tadi´c, Nazzareno Diodato, Julia Kostalova, Svetla Rousseva, Kazimierz Banasik and Christine Alewell, 2016, “Monthly Rainfall Erosivity: Conversion Factors for Different Time Resolutions and Regional Assessments,” Water, Vol. 8, No. 4, pp. 1-18.

延伸閱讀