透過您的圖書館登入
IP:18.224.30.118
  • 期刊

曲球與滑球運動軌跡的數值模擬及知識輔助訓練

Numerical Simulation of the Trajectory of Curveball and Slider and Knowledge-Aided Training

摘要


具多變球種及控球能力的優秀投手是棒球比賽輸贏的關鍵,投手常利用曲球及滑球的尾端銳利下墜來有效壓制打者的出棒。本研究目的為提出一個數值計算方法來模擬曲球及滑球的球體運動特性,並探討兩種球路的放球速率及轉速對運動軌跡及進壘位置的影響。由研究結果顯示15 km/hr的放球球速差異會影響進壘高度約20.0 cm的差異,而300 rpm的球轉速差異影響進壘高度差異僅約1.5 cm。本研究的結論為空氣阻力是延長球體飛行時間,約0.02 s,而馬格納斯力大小是決定球體進壘側向偏移及更多下墜的重要因素。本文提供的放球起始條件及進壘位置的量化運動科學知識可有效輔助投手訓練。

並列摘要


An excellent pitcher with abundant repertoire and dominant ball control are the decisive factors in a baseball game. Curveballs and sliders that veer laterally or downwardly through the batter's hitting zone are 2 examples of breaking the balls for a pitcher to suppress the batter’s hot hitting. This study aimed to analytically study the trajectory of these 2 breaking balls. In the attempt to study control techniques of curveballs and sliders, we used numerical computation to simulate the trajectory motions and investigated the effect of initial velocity and rotating speed at the base entry. The results showed that 15 km/hr difference in the release velocity ends up with an averaged difference of entry height by 20.0 cm, but a 300-rpm release angular speed difference makes a slight change of only 1.5 cm in entry height. We concluded that the drag force increases the flight time of a pitch by about 0.02 s, and the Magnus force induces the lateral movement and achieves more drop. The obtained quantitative relationship between the initial conditions and entry positions will offer pitchers necessary academic knowledge-aided pitching training in sports science.

參考文獻


李中傑(2011)。由流體力學之觀點看作用在飛行棒球上的力。物理教育學刊,12 卷 1 期,57-72頁。doi:10.6212/CPE.2011.1201.04[Lee, C.-C. (2011). Forces on a flying baseball from the viewpoint of fluid dynamics: Where are those forces coming from? and how large are they? Chinese Physics Education, 12(1), 57-72. doi:10.6212/CPE.2011.1201.04]
高英傑、江昆達(2008)。棒球縫線對飛行軌跡與球速之影響。大專體育學刊,10 卷 1 期,99-109 頁。doi:10.5297/ser.200803_10(1).0008[Kao, Y.-C., & Chiang, K.-D. (2008). The effects of the baseball seams on flying trajectories and velocities. Bulletin of University Physical Education & Sports, 10(1), 99-109. doi:10.5297/ser.200803_10(1).0008]
Barkla, H. M., & Auchterlonie, L. J. (1971). The Magnus or Robins effect on rotating spheres. Journal of Fluid Mechanics, 47(3), 437-447. doi: 10.1017/S0022112071001150
Bray, K., & Kerwin, D. (2003). Modelling the flight of a soccer ball in a direct free kick. Journal of Sports Science, 21(2), 75-85. doi:10.1080/0264041031000070994
Escalera Santos, G. J., Aguirre-López, M. A., Díaz-Hernández, O., Hueyotl-Zahuantitla, F., MoralesCastillo, J., & Almaguer, F-J. (2019). On the aerodynamic forces on a baseball, with applications. Applied Mathematics and Statistics, 4, 66. doi:10.3389/fams.2018.00066

被引用紀錄


鄭朝政、林耕宇、張桂琥、謝文英(2023)。軍事體育轉型:導入運動科學教育之研究課程與教學26(1),163-196。https://doi.org/10.6384/CIQ.202301_26(1).0007
陳羿揚、林琨瀚、邱文信(2021)。手指動作對改變棒球投擲球路的效益:系統性回顧中華體育季刊35(2),113-124。https://doi.org/10.6223/qcpe.202106_35(2).0005
游鳳芸、張憲國(2022)。桌球不同弧圈球軌跡數值模擬與分析體育學報55(1),65-79。https://doi.org/10.6222/pej.202203_55(1).0005

延伸閱讀