透過您的圖書館登入
IP:18.117.72.224
  • 期刊

如何將量子化學計算應用於電催化反應

How to Apply Quantum Mechanical Simulations to Study Electrochemical Catalysis

摘要


由於人口和經濟成長,全球能源的消耗急遽增加。為了在不增加二氧化碳濃度的情況下滿足能源的需求,國際社會需要積極採行碳中和的能源循環方式。為此,開發用於產生太陽能燃料的電催化劑十分的重要,而在過去二十年以來,量子力學已被廣泛用於研究電化學反應及設計更有效率的催化材料。本文將引領讀者了解計算氫電極用於模擬電催化反應的基礎理論,並介紹此模型於產氫反應、二氧化碳還原反應、析氧反應與氧氣還原反應上的應用。前三項反應對製備太陽能燃料十分的重要,而最後一項反應則主要用於燃料電池技術上。此外,也將闡述如何利用反應曲面上各個反應中間物吸附能的線性關係,以尋找各反應對應的描述符,並繪製火山圖,其將可用於高通量篩選反應性良好的材料。

並列摘要


Global energy consumption is increasing dramatically due to population and economic growth. In order to meet the energy demand without increasing CO_2 concentration in the atmosphere radically, the global community needs to move fast toward a carbon-neutral energy cycle. To do so, it is important to develop electrocatalysts for solar fuel production. In the past two decades, quantum mechanics (QM) has been used to study electrochemical reactions and to design more efficient electrocatalysts. In this tutorial, we reviewed the concept of the computational hydrogen electrode model (CHE), and introduced how to combine QM with this model to study the hydrogen evolution reaction (HER), CO_2 reduction reaction (CO_2RR), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR). The first three reactions are important for solar fuel production, whereas the latter one is important for fuel cell technology. Additionally, we also explained how to use the scaling relationship between the adsorption energies of different intermediates along the reaction pathway to define a descriptor that can be used for high-throughput screening of more active electrocatalysts and to build a catalytic activity volcano plot.

延伸閱讀