透過您的圖書館登入
IP:3.141.0.61
  • 學位論文

浸沒與非浸沒透水性圓柱之受力及流場模擬研析

Numerical Investigation of Flows through Submerged and Non-Submerged Porous Cylinders and Their Acting Forces

指導教授 : 張倉榮
共同指導教授 : 謝正義(Cheng-I Hsieh)
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究以三維數值模式模擬水流流經透水性圓柱之流場,探討透水性圓柱於不同浸沒水深的流場特性及受力情形。模式中使用有限體積法離散控制方程式,並以標準k-ε紊流模式及體積分率法,模擬紊流流況及自由液面之變化情形。為了呈現水流受透水性圓柱之阻滯現象,孔隙介質流模式將引用於模擬當中。與水工模型試驗驗證後,發現模式與試驗結果有一致的趨勢,顯示本研究所選用的模式應用於研究流場具有足夠的精確度。 在單根透水性圓柱應用案例中,流況分為浸沒及非浸沒等五組不同平均水位,且採用五種不同孔隙率。非浸沒流況下,圓柱受力與平均水位成正比關係;浸沒流況下,圓柱受力則與平均水位為反比關係。另外,平均水位在略等同於圓柱高度時,圓柱受力為五組不同平均水位中最大。在多排圓柱群應用案例中,一共設置四種模擬情境。案例A:非交錯排列之透水性圓柱群於浸沒流況、B:非交錯排列之實心圓柱群於浸沒流況、C:交錯排列之透水性圓柱群於浸沒流況、與D:非交錯排列之透水性圓柱群於非浸沒流況。在案例A和B中比較透水與實心圓柱群排與排間的受力差異,受力折減率各別為17%與11%,顯示透水性圓柱群中排與排間的影響較大。在案例A和C中,受力折減率在交錯排列下為25%,其較非交錯排列下之17%高。在案例A和D中,受力折減率在非浸沒流況為27%,而在浸沒流況為17%。

並列摘要


In this study, flows through porous cylinders are simulated by three-dimensional computational fluid dynamics software FLUENT and their acting forces in different water depths are discussed. The standard k-ε turbulent model and the volume fluid method (VOF) are adopted to describe the turbulent flows with free surface. To reflect the blockage effect of flows through porous cylinders, a porous media theory is introduced herein. The simulated results against the experimental data show good agreement. The resistant forces on a single cylinder with various porosities in various water depths are investigated. It is found that the resistant force increases as the water depth increases in non-submerged flows while the resistant force decreases as the water depth increases in submerged flows. In the cases of multi-row cylinders, four scenarios such as Scenario A: non-staggered porous cylinders in submerged flows, Scenario B: non-staggered solid cylinders in submerged flows, Scenario C: staggered porous cylinders in submerged flows and Scenario D: non-staggered porous cylinders in non-submerged flows are performed. To summary, from Scenarios A and B, the reduction rates in average force are respectively 17% and 11% for porous and solid cylinders. It means that the interacting effect between two rows of porous cylinders is more significant. To compare Scenarios A and C, the reduction rate in average force as 25% in staggered arrangements is larger than that as 17% in non-staggered arrangements. It can be found that the reduction rate in average force is 27% in non-submerged flows while that is 17% in submerged flows in Scenarios A and D.

參考文獻


41. 王婉綺,2012。「透水性圓柱群之三維度流場數值模擬」,國立臺灣大學生物資源暨農學院生物環境系統工程學研究所碩士論文。
40. 張家銘,2011。「孔隙消能結構物之三維度流場數值研析」,國立臺灣大學生物資源暨農學院生物環境系統工程學研究所碩士論文。
34. 顧可欣,張高華,張倉榮,2008。「三維度魚道水理及魚體行進力能之數值模擬研究」,農業工程學報,第54卷第3期,頁64-84。
37. 黃偉哲,2009。「渠流通過透水構造物之流場及紊流特性研究」,國立成功大學水利及海洋工程研究所博士論文。
36. 黃怡仁,2009。「直排筐網群樁於渠道中之沖淤現象」,國立成功大學水利及海洋工程研究所碩士論文。

延伸閱讀