透過您的圖書館登入
IP:18.119.126.80
  • 學位論文

無機聚合材料滲透特性及影響因素研究

Permeability and Its Affecting Factors for Geopolymer-based Materials.

指導教授 : 翁祖炘
共同指導教授 : 王泰典

摘要


無機聚合材料為新一代環保綠色材料,已陸續應用於結構維修補強、建築工程抗酸鹼腐蝕的管材、地板材料以及固化有毒重金屬等領域,並為替代碳排放量甚大的混凝土最具潛能的材料之一,掌握其基本特性及其影響因素之研究,為深入研究與後續推廣的關鍵課題。 本研究旨在探討無機聚合材料的滲透特性以及其影響因素,並與力學及物理特性建立關係。研究透過實驗設計法,規劃一系列試驗參數與條件並進行試驗,明瞭無機聚合物組成成份及微觀結構組對滲透特性之影響,並釐清不同成分因子間之交互作用。統計迴歸無機聚合物的配比與水力傳導係數、強度與變形參數等的量化經驗式,提供研究所需微調組成成份以及製備不同特性無機聚合物的依循。繼而以無機聚合物為膠結材料,拌合不同比例石英砂,探討無機聚合砂漿其基本物理、滲透與力學特性,據以掌握無機聚合材料水力傳導係數的範圍、孔徑大小分佈及孔隙連通性等。最後以不同無機聚合材料黏結水泥砂漿,探求無機聚合材料與水泥砂漿的界面滲透特性,並與界面力學特性建立關係。據以評估界面黏結特性,並建立修補成效關係式,以利後續研究與工程應用時材料特性及修補成效評估的參考。 研究結果顯示,本研究配比範圍無機聚合物水力傳導係數在10-9-10-11之間,主要影響因子為OH- (M),其次為SiO2 (mol),其迴歸判定係數r2可達0.95。而依OH- (M)與SiO2 (mol)搭配比例不同,可形成不同孔隙孔徑分佈與孔隙體積比,進而影響其水力傳導係數。拌合石英砂製成無機聚合砂漿相較於無機聚合物其孔隙率、吸水率與水力傳導係數皆下降,單壓強度上升。而孔徑分佈可分為原漿體之孔隙及漿體與骨材間孔隙,主要影響水力傳導係數因子為有效孔隙率。在評估介面黏結特性方面,本研究設計製作介面透氣試驗裝置,可有效且快速求得單一材料的滲透特性,且與徑向滲透試驗結果相符,故可判斷本研究介面透氣試驗設備之可行性。而材料黏結介面透氣係數與介面間接張力強度有良好的相關性,其r2可達0.95,故介面滲透試驗具有評估材料黏結介面特性之功用。

並列摘要


Geopolymer has received much attention in recent years as an environmentally friendly material. Geopolymer has been used in structure repair and reinforcement, regarding as alkaline/acid-resistant materials of pipeline and floor in architecture, and applied in heavy metal solidification etc. It is also one of the most potential materials to replace concrete, which releases large amount of carbon dioxide. Researches to understand its basic properties and influence factors was an important issue to further studies and application. This proposal aims to investigate the permeability and influence factors of geopolymer, and to associate its mechanical and physical properties. Experimental design method is used in planning and designing a series of experimental parameters and factors to employ experiments in order to clarify the influences of variation of composition and microstructure to hydraulic conductivity, and the interaction between these factors. Statistical regression of geopolymer ingredients, conductivity coefficient, strength and deformational parameters deduces quantification empirical formula, providing a basis for adjusting composition to produce geopolymer with various properties. After that, geopolymer will be utilized as a cementation when mixing mortar with different proportion of quartziferous sands to figure out the physical, permeation, and mechanical properties of geopolymer mortar. Hence, the range of hydraulic conductivity, the pore size distribution and connectivity can be understand. In addition, using different geopolymer bond cement mortar to determine the permeability parameters of the adhering interface between geopolymer and cement mortar, and to establish relationships with mechanical parameters. According to assess the adhering interface characteristics can establish the effectiveness of repairing relationship. This would be a helpful reference for future research and engineering application. Study results indicate that the hydraulic conductivitys within the scope of the mix design are 10-9-10-11 m/s, and OH- (M) is the primary influential factor in geopolymer hydraulic conductivity, followed by SiO2 (mol). The following regression equation has coefficient of determination of 0.95. Different proportions of OH- and SiO2 can form different pore size distribution and pore volume, subsequently causing differences in hydraulic conductivity. Mixing mortar with quartziferous sands of geopolymer mortar compared with geopolymer, its porosity, water absorption, and hydraulic conductivity are decreased, and uniaxial compressive strength is increased. The pore size distribution of geopolymer mortar corresponds to two pore systems: the gel pores and the capillary pores, and effective porosity is the primary influential factor in geopolymer mortar hydraulic conductivity. For assessing the repair adhesion, the interface air permeability test device can efficiently and quickly obtain the air permeability of single material, and the test results are in agreement with radial flow test results. It can determine the feasibility of interface air permeability test device. The adhering interface permeability and interface indirect tensile strength have good correlation, and the following regression equation has coefficient of determination of 0.95. Therefore, the interface air permeability test has ability to assess the adhering interface characteristics.

參考文獻


29. 呂軒志 (2013),無機聚合物工程特性及影響因素暨應用於混凝土缺陷修補研究,博士論文,國立台北科技大學工程科技研究所,台北。
31. 柯翰勝 (2011),低二氧化碳排放的無機聚合綠色水泥開發研究,碩士論文,國立台北科技大學資源工程研究所,台北。
42. 戴詩潔 (2005),高嶺石鋁矽酸鹽聚合材料之研究,碩士論文,國立台北科技大學材料及資源工程系(所),台北。
28. 呂軒志、王泰典、鄭大偉、翁祖炘(2012):以實驗設計法探討無機聚合物力學特性之影響因素,台灣鑛業,第64卷,第2期,37-48頁。
34. 陳信安 (2012),無機聚合物技術應用於綠色水泥及綠色混凝土之研究,碩士論文,國立台北科技大學資源工程研究所,台北。

延伸閱讀