透過您的圖書館登入
IP:44.222.169.36
  • 學位論文

應用彈道式移動方法比較實體與虛擬3D環境的手部移動表現

Utilizing Ballistic Movement to Compare Hand Performance in Real World and in a Virtual 3D Environment

指導教授 : 林瑞豐

摘要


在虛擬實境與實體環境中的手部移動會因為人的視覺以及觸覺回饋而有所不同,由於虛擬實境的呈現深度視覺資訊不足,加上人類視覺資訊處理系統對注意力資源的分配情形 (Van Erp & Oving, 2002),造成深度方向的移動績效不如垂直或是水平方向 (Grossman & Balakrishnan, 2004)。過去最常評估手移動控制或輸入設備績效的方法為Fitts’ law (Fitts, 1954),但其所能得知的為單一移動下的速度與準確度的整合時間,本研究利用彈道式移動方法 (Lin & Drury, 2011) 得知在實體與虛擬3D環境中的移動速度與準確度是如何因為不同的3D環境和移動角度有所變化。 本研究分為前測實驗和正式實驗,前測實驗為測試彈道式移動方法應用於量測實體與虛擬3D環境下手部移動表現之可行性,正式實驗為量測實體與虛擬3D環境下不同移動角度的表現差異。正式實驗中,八名受測者在實體與虛擬3D環境下依照隨機的順序執行五種移動角度和六種距離的彈道式移動。移動過程中所量測到的移動時間與三軸落點誤差變異數分別以兩種彈道式移動模型進行分析。研究結果顯示 (1) 兩種彈道式移動模型能有效描述量測資料的變異、(2) 虛擬環境中的彈道式移動時間較實體環境短、虛擬環境中彈道式移動變數誤差較實體環境大,且從彈道式移動落點常數誤差發現虛擬環境的有未抵達目標點的情形 (overshoot) 導致在虛擬環境中的移動表現需要花費較長的瞄準移動時間、(3) 從彈道式移動時間以及彈道式移動變異模型可以得知影響實體環境中執行瞄準移動的主要因素為移動速度,而影響虛擬環境中執行瞄準移動的主要因素為移動變異、 (4) 不同移動角度的績效表現會與移動涉及到的肢體及關節層級所影響,實體環境下當移動所涉及到的肢體及關節層級越大,移動的速度就會較慢,而向身體內側角度 (135°、180°) 執行移動的移動變異較小;而虛擬環境下主要因為深度視覺資訊的呈現不同而有所影響。 本研究成功量測在實體與虛擬3D環境中不同移動方向執行的彈道式移動並驗證彈道式移動兩個模型,彈道式移動模型相較於Fitts’ law (1954) 能夠提供對於手部移動操作在「速度」與「準確度」上獨立的評估資訊,未來可作為輸入控制設備的準則。

並列摘要


Because of the rapid innovation of technology, three-dimensional (3D) target acquisition was explored as a popular input function for various appliances. The performance of the equivalent movement varies in the real world and in a virtual world. In a 3D environment, tracking accuracy in the depth dimension of the display is often worse than that in the vertical and horizontal dimensions (Van Erp & Oving, 2002; Grossman & Balakrishnan, 2004). Although Fitts’ law (1954) is the most comment method utilized to evaluate computer input devices, using Fitts’ law method cannot provide independent evaluation information of speed and accuracy while conducting hand movements. To provide an alternative methodology for evaluating individual differences and human-computer interaction designs while performing real and virtual 3D movements, this study tested the application of ballistic movement models. This study utilized ballistic movement to provide independent performance information of “speed” and “accuracy” while performing movement in real and virtual 3D conditions. The research was consisted of two experiments, the pilot study and formal experiment. The real 3D movements were conducted in a darkened room, the movement targets was displayed by a self-developed laser emitter. The virtual 3D environment used Unity3D to develop user interface. In the two experiment conditions, eight participants conducted 3D ballistic movements of specific amplitudes and five directions (0°, 45°, 90°, 135°, 180°) using a personal computer and an electromagnetic tracking system. The measured data of movement time and movement end-point variability were analyzed by ballistic movement models so that the performance of 3D movements in two conditions could be compared. The results showed that (1) ballistic movement models can well fit the measured data, (2) the main factors affect movements in real environment was “speed” of movement, and main factors affect movements in virtual environment was the endpoint variability (3) movements that involved less moving joints and segments required shorter movement time and resulted larger endpoint variability in real environment, and (4) the new evaluation method can provide independent performance information of “speed” and “accuracy” while conducting 3D movements in real and virtual environments.

參考文獻


[6] Grossman, T., & Balakrishnan, R. (2004). Pointing at trivariate targets in 3D environments. Paper presented at the Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Vienna, Austria.
[19] Lin, R. F., Tsai, Y.-C., Chung, C.-W., & Huang, C.-Y. (Unpublished). Ballistic movement method as an effective approach for seperately evaluationg speed and accuracy of computer mice. Ergonomics.
[2] Balakrishnan, R., & MacKenzie, I. S. (1997). Performance differences in the fingers, wrist, and forearm in computer input control. Paper presented at the Proceedings of the ACM SIGCHI Conference on Human factors in computing systems, Atlanta, Georgia, USA.
[3] Cha, Y., & Myung, R. (2010). Extended Fitts' law in Three-Dimensional Pointing Tasks. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 54(13), 972-976. doi: 10.1177/154193121005401311
[4] Fitts, P. M. (1954). The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology, 47, 381-391.

被引用紀錄


張家豪(2017)。可穿戴控制器在2D和3D情境下指向與手勢任務之績效評估〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840%2fcycu201700570

延伸閱讀