透過您的圖書館登入
IP:3.141.24.134
  • 學位論文

布林函數多項式表示法之次方下界

Degree Lower Bounds of Polynomials for Boolean Functions

指導教授 : 蔡錫鈞

摘要


以布林函數計算複雜度的研究領域而言,多項式次方是重要的測度。在本論文裡,我們針對受n個變數影響的布林函數,證明數個次方下界限。如果對於所有 x,yin{0,1}^{n},f(x) eq f(y) Rightarrow P(x) otequiv P(y) mod(m)成立,則多項式P(x)in Z_m[x]稱為f(x)佈於Z_m的廣義表示法(generalized representation)}。令m_1與m_2為互質的正整數,而且各自具有s個與t個相異質因數。假設P_1(x)in Z_{m_1}[x]與P_2(x)in Z_{m_2}[x]都是對稱(symmetric)多項式,而且同時是某個對稱函數f的廣義表示法,我們證明 m_1m_2deg(P_1)^sdeg(P_2)^t>n 成立。 如果對於所有xin{0,1}^{n},f(x)=0 Leftrightarrow Q(x)equiv 0 mod(m)成立,則多項式Q(x)in Z_m[x]稱為f佈於Z_m的單邊表示法(one-sided representation)。則考慮與前述結果相同的條件之下,並令Q(x)與widetilde{Q}(x)in Z_{m_2}[x]分別是對稱函數f與 eg f的單邊表示法。我們證明 m_1m_2deg(P_1)^sdeg(Q)^t>n 與 m_1m_2deg(P_1)^sdeg(widetilde{Q})^t>n 至少有一個會成立。請注意Q(x)與widetilde{Q}(x)可以是非對稱多項式。 接著考慮f(x)是非對稱(non-symmetric)布林函數。令Pin Z_{m_1}[x]是f的一個廣義表示法 ,而且Q(x),widetilde{Q}(x)in Z_{m_2}[x]是 eg f的一個單邊表示法。我們證明幾乎必然(almost always) m_1m_2deg(P_1)^sdeg(Q)^t>log_2{n}-O(1) 與 m_1m_2deg(P_1)^sdeg(widetilde{Q})^t>log_2{n}-O(1) 至少一個會成立。 假設f與表示法裡出現的n個變數都有關,則稱為非退化(nondegenerate)函數。我們證明針對任何非退化的函數f,都存在一個變數x_i,使得f|_{x_i=0}與f|_{x_i=1}這兩個限制子函數之中,至少有一個仍然與剩下的n-1個變數有關。可以進一步推論得知,針對任何k是1到n-1間的任意整數,存在留有k個自由變數(free variable)的部分賦值(partial assignment) ho,使得子函數f|_{ ho}與k個變數有關。

並列摘要


Polynomial degree is an important measure for studying the computational complexity of Boolean functions. In this thesis we prove lower bounds for Boolean functions that depend on n variables. A polynomial P(x)in Z_m[x] is a generalized representation of f(x) over Z_m if forall x,yin{0,1}^{n}, f(x) eq f(y) Rightarrow P(x) otequiv P(y) mod(m). Let m_1 and m_2 be relatively prime numbers and have s and t distinct prime factors respectively. If P_1(x)in Z_{m_1}[x] and P_2(x)in Z_{m_2}[x] both are symmetric polynomials and are generalized representations for a symmetric function f, we prove m_1m_2deg(P_1)^sdeg(P_2)^t>n. A polynomial Q(x)in Z_m[x] is a one-sided representation of f over Z_m if forall xin{0,1}^{n}, f(x)=0 Leftrightarrow Q(x)equiv 0 mod(m). Then with the same conditions as above, and let Q(x),widetilde{Q}(x)in Z_{m_2}[x] respectively be one-sided representations of symmetric f and eg f. We prove at least one of m_1m_2deg(P_1)^sdeg(Q)^t>n and m_1m_2deg(P_1)^sdeg(widetilde{Q})^t>n is true. Note that Q(x) and widetilde{Q}(x) can be non-symmetric. Next consider a non-symmetric Boolean function f(x). Let Pin Z_{m_1}[x] be a generalized representation, and Q(x),widetilde{Q}(x)in Z_{m_2}[x] be one-sided representations for f and eg f respectively. We prove that almost always at least one of m_1m_2deg(P_1)^sdeg(Q)^t>log_2{n}-O(1) and m_1m_2deg(P_1)^sdeg(widetilde{Q})^t>log_2{n}-O(1) is true. A Boolean function f:{0,1}^n o {0,1} is called {em nondegenerate} if f depends on all its n variables. We show that, for any nondegenerate function f, there exists a variable x_i such that at least one of the restrictions f|_{x_i=0} or f|_{x_i=1} must depend on all the remaining n-1 variables. This means for any 1leq kleq n-1 there is a partial assignment ho that leaves k variables free such that the restricted subfunction f|_{ ho} depends on the k variables.

參考文獻


[43] S. C. Tsai, and M. C. Yang, ”Representing Symmetric Boolean Functions with Polynomial over Composite Moduli,” Journal of Information Science and Engineering, to appear.
[4] N. Alon and J.H. Spencer. The Probabilistic Method, third edition. John Wiley and Sons, 2008.
[16] D. Z. Du and F. K. Hwang, Combinatorial group testing and its application, 2nd ed. World Scientifi c Publishing, 2000.
[1] S. Aaronson, ”The Polynomial Method in Quantum and Classical Computing,” IEEE 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS), 2008.
[2] N. Alon and R. Beigel. ”Lower bounds for approximations by low degree polynomials over Zm,” Proceedings of the 16th IEEE Conference on Computational Complexity (CCC), 2001.

延伸閱讀