Title

醫療大數據及其應用

Translated Titles

Big Health Data and Its Applications

DOI

10.6320/FJM.2016.20(6).4

Authors

黃瀚萱(Hen-Hsen Huang);陳信希(Hsin-Hsi Chen)

Key Words

大數據 ; 醫學資訊學 ; 電子病歷 ; big data ; health informatics ; electronic health records

PublicationName

台灣醫學

Volume or Term/Year and Month of Publication

20卷6期(2016 / 11 / 25)

Page #

589 - 594

Content Language

繁體中文

Chinese Abstract

大數據(bigdata)意指數量龐大、更新快速、內容複雜,人工不易處理的資料。在醫療領域,數位資料從電子病歷、生物特徵、醫學影像、社群媒體等各種來源不斷湧現。從複雜、大量,而且充滿雜訊的資料裡分析出有價值的資訊,會遇到容量、時效性、多樣性、準確性等方面的挑戰,而雲端運算與機器學習等資訊科技有助於克服這些挑戰。目前海量醫療數據已經應用於就診建議、診斷支援、風險預測、資源管理、公共衛生、疾病預防等方面,讓醫療資源的運用更有效率,促進人類個體與群體的健康。

English Abstract

Big data means a large amount of data that are too complex and too fleet to be managed by human. In the area of healthcare, millions of new data appear from various sources such as electronic health records, biometric data, medical images, and social media data. To analyze the structured/unstructured information in big health data, four challenges are indicated: volume, velocity, variety, and veracity (4Vs). The information technologies like cloud computing and machine learning help overcome these challenges. Big health data are currently applied in outpatient recommendation, clinical decision supporting, risk prediction, resource management, public health, disease prevention, and so on. That makes more efficient use of medical resources and promotes human health.

Topic Category 醫藥衛生 > 醫藥衛生綜合
Reference
  1. 7Andreu-Perez J, Poon CCY, Merrifield RD, et al: Big data for health. IEEE J Biomed Health Inform 2015; 19:1193-208.
    連結:
  2. Fang R, Pouyanfar S, Yang Y, et al: Computational health informatics in the big data age: a survey. ACM Comput Surv 2016;49:12.
    連結:
  3. Huang HH, Lee CC, Chen HH: Mining professional knowledge from medical records. In: Brain Inform Health. Springer 2014;152-63.
    連結:
  4. Goldstein BA, Navar AM, Pencina MJ, et al: Opportunities and challenges in developing risk prediction models with electronic health records data: a systematic review. J Am Med Inform Assoc 2016 May 17. pii: ocw042.
    連結:
  5. Hong KJ, Shin SD, Ro YS, et al: Development and validation of the excess mortality ratio-based Emergency Severity Index. Am J Emerg Med 2012;30:1491-500.
    連結:
  6. Kennedy EH, Wiitala WL, Hayward RA, et al: Improved cardiovascular risk prediction using nonparametric regression and electronic health record data. Med Care 2013;51:251-8.
    連結:
  7. Kourou K, Exarchosa TP, Exarchosa KP, et al: Machine learning applications in cancer prognosis and prediction. Comput Struct Biotechnol J 2015;13:8-17.
    連結:
  8. Singh SK, Malik A, Firoz A, et al: CDKD: a clinical database of kidney diseases. BMC Nephrol 2012; 13:23.
    連結:
  9. Stubbs A, Kotfila C, Xu H, et al: Identifying risk factors for heart disease over time: overview of 2014 i2b2/UTHealth Shared Task Track 2. J Biomed Inform 2015;58:S67-77.
    連結:
  10. Tabak YP, Sun X, Nunez CM, et al: Using electronic health record data to develop inpatient mortality predictive model: Acute Laboratory Risk of Mortality Score (ALaRMS). J Am Med Inform Assoc 2014; 21:455-63.
    連結:
  11. Liu V, Kipnis P, Gould MK, et al: Length of stay predictions: improvements through the use of automated laboratory and comorbidity variables. Med Care 2010;48:739-44.
    連結:
  12. Carter EM, Potts HWW: Predicting length of stay from an electronic patient record system: a primary total knee replacement example. BMC Med Inform Decis Mak 2014;14:26.
    連結:
  13. Iyer G, Hanrahan AJ, Milowsky MI, et al: Genome sequencing identifies a basis for everolimus sensitivity. Science 2012;338:221.
    連結:
  14. Zlotta AR: Words of wisdom: Re: Genome sequencing identifies a basis for everolimus sensitivity. Eur. Urol 2013;64:516.
    連結:
  15. Feinberg DA, Moeller S, Smith SM, et al: Multiplexed echo planar imaging for sub-second whole brain FMRI and fast diffusion imaging. PLoS One 2010;5:e15710.
    連結:
  16. Van Horn JD, Toga AW: Human neuroimaging as a “Big Data” science. Brain Imaging Behav 2014; 8:323-31.
    連結:
  17. Arnal Barbedo JG: Digital image processing techniques for detecting, quantifying and classifying plant diseases. SpringerPlus 2013;2: 660.
    連結:
  18. Andoni A, Indyk P: Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. IEEE Trans Inf Technol Biomed 2012;16:758-69.
    連結:
  19. Zhang X, Xing F, Su H, et al: High-throughput histopathological image analysis via robust cell segmentation and hashing. Med Image Anal 2015;26:306-15.
    連結:
  20. De Choudhury M, Counts S, Horvitz E: Social media as a measurement tool of depression in populations. In: Proceedings of the 5th Annual ACM Web Science Conference. Paris, France, 2013:47-56.
    連結:
  21. Burnap P, Colombo W, Scourfield J: Machine classification and analysis of suicide-related communication on Twitter. In: Proceedings of the 26th ACM Conference on Hypertext & Social Media. New York, NY, USA, 2015:75-84.
    連結:
  22. Feldman B, Martin EM, Skotnes T: Big data in healthcare hype and hope. Dr. Bonnie 360o. 2012. http://www.west-info.eu/files/big-data-in- healthcare.pdf./ Accessed August 4, 2016.
  23. Kieseberg P, Schantl J, Fruhwirt P, et al: Witnesses for the doctor in the loop. In: Brain Informatics and Health. Springer 2015;369-78.
  24. QResearch: QRESEARCH. 2012. http://www. qresearch.org./ Accessed August 4, 2016.
  25. Cholleti S, Post A, Gao J, et al: Leveraging derived data elements in data analytic models for understanding and predicting hospital readmissions. In: Proc AMIA Symp, 2012. Chicago, IL, USA, 2012:103-11.
  26. SIGKDD: KDD Cup 2008: breast cancer. 2008. http://www.kdd.org/kdd-cup/view/kdd-cup-2008./ Accessed August 4, 2016.
  27. Ventola CL: Social media and health care professionals: benefits, risks, and best practices. Pharmacy and Therapeutics 2014;39: 491-520.
  28. Akay A, Dragomir A, Erlandsson BE: Mining social media big data for health. IEEE Pulse 2015. http://pulse.embs.org/november-2015/ mining-social-media-big-data-for-health./ Accessed August 4, 2016.
  29. Centers for Disease Control and Prevention: CDC competition encourages use of social media to predict flu. 2013. http://www.cdc.gov/ flu/news/predict-flu-challenge.htm./ Accessed August 4, 2016.