透過您的圖書館登入
IP:3.147.89.85
  • 期刊

一維奈米金屬氧化物陣列應用於太陽光分解水產生氫氣

One-Dimensional Metal Oxide Nanostructured Array Applied to Solar Water Splitting Hydrogne Generation

摘要


發展乾淨而且可以再生使用之能源,並減少使用化石燃料是現今一大目標。自從本多與藤嶋兩位教授在1972年發表以二氧化鈦為電極,進行光電化學之水分解工作後,許多研究人員便開始著重於利用半導體為光觸媒進行水分解的研究。希望藉由光電化學水分解的原理,結合太陽光產生氫氣,能有效的利用太陽光之光觸媒成為發展重點。本研究即以三氧化鎢和二氧化鈦為光電極,進行光電化學性質的研究,來尋找最佳光電化學水分解效率的製備條件。在本研究中,我們利用水熱法在透明導電氟.二氧化錫玻璃上,製備高規則排列的一維二氧化鈦奈米柱陣列,和利用三氧化鎢一維奈米陣列於鎢片上,並利用此材料作為水分解製氫反應中的光電極。一維二氧化鈦奈米柱在模擬太陽光源下的產氫效率為0.02%,而三氧化鎢則為0.22%。從兩者之間的差距比較,希望可以得知目標光電極需要改進的方向。

並列摘要


Global warming has become a universal topic in these days. The clean and recyclable energy is an important topic for us. Since Fujishima and Honda reported photoelectrochemical (PEC) water splitting using a TiO_2 electrode in 1972, many researchers have intensively studied water splitting using semiconductor photocatalysts. Focusing on developing efficient conversion of solar light of photocatalysts is important to produce H2 by PEC water splitting. Herein, we study PEC properties of WO_3 and TiO_2 that have promise for water splitting. In this study, we fabricate highly ordered one-dimensional titanium oxide nanorod array on fluorine-doped tin oxide (FTO) substrate and WO_3 nanowire arrays on metal tungsten substrate by hydrothermal method as photoelectrode. The solar-to hydrogen efficiency of TiO_2 as electrode in PEC cells achieved 0.02 %, and that of WO_3 achieved 0.22%. In the end, we wish to know the target of photoelectrode evolution by understanding the difference between TiO_2 and WO_3.

延伸閱讀