Translated Titles

Exotic Quantum Phases in 2D extended hardcore boson Hubbard Model





Key Words

硬核玻色子哈伯模型 ; 隨機續列展開 ; 量子蒙地卡羅 ; 超固體 ; 古茨維勒平均場理論 ; Hardcore Boson Hubbard Model ; Stochastic Series Expansion ; Quantum Monte ; Directed-loop algorithm ; supersolid ; Gutzwiller mean-field theory



Volume or Term/Year and Month of Publication


Academic Degree Category




Content Language


Chinese Abstract

在這篇論文中,我們使用隨機續列展開(Stochastic Series expansion, SSE)量子蒙地卡羅的方法來探討在二維方形晶格中硬核玻色子哈伯模型(Hardcore Boson Hubbard Model)。在同時考慮最鄰近(nearest-neighbor, NN)以及次鄰近(next nearest-neighbor, NNN)的交互作用時,有一些奇異的量子相態被我們觀察到,像是超固體態(Supersolid)。同時我們也使用古茨維勒平均場理論(Gutzwiller mean-field method)的方法來幫助我們探討我們的問題。 我們觀察到當把次鄰近的躍遷項加入考慮時,我們能夠觀察到一個原本被認為是不穩定的棋盤式超固體(checkerboard supersolid);其次,當同時考慮足夠大的最鄰近與次鄰近赤力時,我們可以觀察到四分之一填滿的固體以及同型式的超固體(quarter-filled solid and quarter-filled supersolid)。 在我們所研讀的範圍裡,當在半填滿狀態時可以觀察到棋盤式以及條紋式的固體在四分之一填滿狀態時能觀察到四分之一填滿型式的固體。而相對應的超固體只能在系統的填滿密度遠離這些填滿狀態時才能觀察到;這強烈的建議我們在方形晶格中所觀察到的這些超固體都和他們的晶格缺陷有很大的關係。

English Abstract

Supersolid state of matter, which exhibits both the superfluid and the solid orders, was first proposed half a century ago. Since the theoretical predictions in the early 70s, there has been enormous amount of experimental attempts to search for its existence. Experimental evidence of the supersolid phase, however, is not present until the observation of superflow in bulk He^4 in 2004. This intriguing result renews the interests of this topic, and intensive research has been carried out to find the existence of the supersolid phase and understand possible mechanisms. However, the situation is still quite controversial. On the other hand, numerical studies on simple lattice models provide a useful theoretical prediction for this problem. With the help of Quantum Monte Carlo (QMC) simulation, physical behaviors of the boson Hubbard model, which captures the competition between the kinetic and the potential energies, can be analyzed exactly. Over the past decade, several numerical studies on the square lattice have been proposed. In the hardcore limit, the checkerboard supersolid is not a stable supersolid phase with only the nearest neighbor(NN)repulsion. In contrast, it is possible to observe a stable striped supersolid with only large next-nearest neighbor(NNN) repulsion. Such "lattice supersolid" in the lattice models is not only an idealized prediction; nowadays, it is possible to trap ultracold atoms in optical potential.It is possible to make connection between lattice models and experiments on the optical lattice. This provides other possibilities to observe supersolid state. In this thesis, we study the phase diagram of the hardcore boson-Hubbard model on the 2D square lattice with both the nearest and the next-nearest neighbor hopping and repulsion. We study the model using bosonic Gutzwiller mean-field theory and the stochastic series expansion (SSE) QMC simulation with directed-loop algorithm. We observe a stable checkerboard supersolid when NNN hopping is introduced to the model. Slowly turning on the NN hopping, we see that checkerboard supersolid melts into a superfluid. We also find the quarter-filled solid and the quarter-filled supersolid emerge when the NN and the NNN repulsions are both large near quarter-filling. The quarter-filled and checkerboard supersolids are observed when the system is doped away from solid states at these fillings. In the intermediate region between the t'-V_1 model and t-V_2 model, we find that there is always a superfluid phase between the two different solid structures. It suggests that the superfluid is the preferred state in the strong competition region.

Topic Category 基礎與應用科學 > 物理
理學院 > 物理研究所
  1. [1] O. Penrose and L. Onsager, Phys. Rev. 104, 576 (1956).
  2. [3] L. Reatto, Phys. Rev. 183, 334 (1969).
  3. [5] A.J. Leggett, Phys. Rev. Lett. 25, 1543 (1970).
  4. [7] D.M. Ceperley and B. Bernu, Phys. Rev. Lett. 93, 155303 (2004).
  5. [8] N. Prokof’ev and B. Svistunov, Phys. Rev. Lett. 94, 155302 (2005).
  6. [9] E. Burovski et al., Phys. Rev. Lett. 94, 165301 (2005).
  7. [10] E. Kim and M.H.W. Chan, Phys. Rev. Lett. 97, 115302 (2006).
  8. [14] A. Griesmaier et al., Phys. Rev. Lett. 94, 160401 (2005).
  9. [15] D. Jaksch et al., Phys. Rev. Lett. 81, 3108 (1998).
  10. [16] K.Goral et al., Phys. Rev. Lett. 88, 170406 (2002).
  11. [17] V.W. Scarola and S. Das Sarma, Phys. Rev. Lett. 95, 033003 (2005).
  12. [18] E.Y. Loh et al., Phys. Rev. B 41, 9301 (1990).
  13. [20] P. Sengupta et al., Phys. Rev. Lett. 94, 207202 (2005). and ref. therein.
  14. [22] R.G. Melko et al., Phys. Rev. Lett. 95, 127207 (2005); R.G. Melko et
  15. [23] D. Heidarian and K. Damle, Phys. Rev. Lett. 95, 127206 (2005).
  16. [24] M. Boninsegni and N. Prokof’ev, Phys. Rev. Lett. 95, 237204 (2005).
  17. mat/0701120 (2007)
  18. [26] A.W. Sandvik and J. Kurkijarvi, Phys. Rev. B 43, 5950 (1991); A.W.
  19. Sandvik, J. Phys. A 25, 3667 (1992).
  20. [27] O.F. Syjuasen and A.W. Sandvik, Phys. Rev. E 66, 046701 (2002).
  21. [28] M.C. Gutzwiller, Phys. Rev. Lett. 10, 159 (1963); D.S. Rokhsar and
  22. Rev. B 45, 3137 (1992).
  23. [29] N. Metopolis et al., J. Chem. Phys. 21, 1087 (1953).
  24. [31] A.W. Sandvik et al., Phys. Rev. B 56, 14510 (1997).
  25. [32] N.V. Prokof’ev and B.V. Svistunov, Phys. Rev. B 61, 11 282 (2000);
  26. [33] E.L. Pollock and D.M. Ceperley, Phys. Rev. B 36, 8343 (1987).
  27. [2] A.F. Andreev and I.M. Lifshitz, Sov. Phys. JETP 29, 1107 (1969).
  28. [4] G.V. Chester,Phys. Rev. A 2, 256 (1970).
  29. [6] E. Kim and M.H.W. Chan, Nature 427, 225 (2004).
  30. [11] A.S.C. Rittner and J.D. Reppy, cond-mat/0604528 (2006).
  31. [12] M. Anderson et al., Science 269, 198 (1995) ; K.B. Davis et al., Phys. Rev. Lett. 75, 3969 (1995) ; C.C. Bradley et al., Phys. Rev. Lett.75,1687 (1995)
  32. [13] M.Greiner et al., Nature (London) 415, 39 (2002).
  33. [19] G.G. Batrouni et al., Phys. Rev. Lett. 74, 2527 (1995), F. Hebert et al.,Phys. Rev. B 65, 014513 (2002) and ref. therein.
  34. [21] S. Wessel and M. Troyer, Phys. Rev. Lett. 95, 127205 (2005); S. Wessel,cond-mat/0701337 (2007)
  35. al., cond-mat/0607501 (2006).
  36. [25] J.Y. Gan et al., cond-mat/0609492 (2006); J.Y. Gan et al., cond-
  37. B.G. Kotliar, Phys. Rev. B 44, 10328 (1991); W. Krauth et al., Phys.
  38. [30] K. Binder and D.W. Heermann, Monte Carlo Simulation in Statistical Physics-An Introduction, Springer-Verlag Berlin Heidelberg New York (1988).
  39. R.G. Melko, A.W. Sandvik, and D.J. Scalapino, Phys. Rev. B 69, 014509 (2004).
  40. [34] G. Schmid, Phase transition of hardcore bosons, Thesis(PhD). Dipl.Phys. ETH.