Title

嚴重阻塞性睡眠呼吸中止症患者其運動誘發支氣管收縮現象之探討

Translated Titles

Exercise-Induced Bronchoconstriction in Patients with Severe Obstructive Sleep Apnea Syndrome

DOI

10.6342/NTU.2010.00298

Authors

林珮君

Key Words

阻塞性睡眠呼吸中止症 ; 呼吸道發炎 ; 運動誘發支氣管收縮 ; 持續性正壓呼吸治療 ; Obstructive sleep apnea ; Airway inflammation ; Exercise-induced bronchoconstriction ; Continuous positive airway pressure

PublicationName

臺灣大學物理治療學研究所學位論文

Volume or Term/Year and Month of Publication

2010年

Academic Degree Category

碩士

Advisor

王儷穎

Content Language

繁體中文

Chinese Abstract

研究背景及目的:阻塞性睡眠呼吸中止症之病徵為睡眠時週期性重覆發生的上呼吸道阻塞。近年來研究證據顯示此類患者的呼吸道有局部發炎現象。呼吸道處於慢性發炎的狀態會增加運動誘發支氣管收縮的機會。本研究主要目的為探討嚴重阻塞性睡眠呼吸中止症患者是否會在運動激發測試中發生運動誘發支氣管收縮現象。另外研究也將追蹤為期三個月的持續性正壓呼吸治療對阻塞性睡眠呼吸中止症患者在運動激發測試中氣道反應的影響。方法:於睡眠門診徵召22位患有嚴重阻塞性睡眠呼吸中止症之患者為實驗組,9位依性別、年齡、身體質量指數配對之受試者為對照組。所有受試者皆需至實驗室兩次。第一次進行基線肺功能的測量與誘發痰液以分析呼吸道基線發炎狀況;第二次為進行一標準化之運動激發測試並於運動結束後第2.5、5、10、15、20及30分鐘分別測量第一秒用力吐氣量(forced expiratory volume in one second, FEV1),以評估運動誘發支氣管收縮發生與否及程度。實驗組受試者在接受為期3個月之持續性正壓呼吸治療後,再次進行上述所有測試。結果:實驗組受試者FEV1與用力吐氣肺容量(forced vital capacity, FVC)之比值(FEV1/FVC)(p<0.01)及用力吐氣中段流速(25%-75% forced expiratory flow, FEF25-75)(p=0.03)均較對照組低。運動激發測試後實驗組無受試者出現運動誘發支氣管收縮的現象。基線及運動後實驗組痰液中之巨噬細胞比例均顯著低於對照組(p=0.03)。與基線相比,兩組受試者運動後誘發痰液中支氣管上皮細胞所佔比例均會升高。基線之嗜中性球比例與運動後FEV1之改變間具顯著低度負相關。結論:嚴重阻塞性睡眠呼吸中止症患者其呼吸道存在發炎。雖然本研究之OSAS患者均未達臨床判定具運動誘發支氣管收縮現象,但其氣道發炎程度仍會影響氣道在運動時的反應。

English Abstract

Background and purpose: Obstructive sleep apnea syndrome (OSAS) is characterized by repeated episodes of upper airway obstruction during sleep. Recent studies have found evidence of airway inflammation in patients with OSAS. Individuals with chronic airway inflammation are at higher risk for exercise-induced bronchoconstriction (EIB) during exercise. The main purpose of this study was to evaluate EIB during exercise challenge test in patients with severe OSAS. The effect of a 3-month continuous positive airway pressure (CPAP) therapy on EIB was also explored. Methods: Twenty-two patients with severe OSAS and 9 control subjects matched for age, gender, and body mass index (BMI) were recruited from sleep clinic. All participants came to the laboratory on 2 separate days. On the 1st visit, baseline pulmonary function test (PFT) and airway inflammation assessed by induced sputum were performed. On the 2nd visit, an exercise challenge was performed using standard testing protocol and post-exercise forced expiratory volume in one second (FEV1) were measured at 2.5, 5, 10, 15, 20, and 30 minutes. For patients with severe OSAS, all measurements were repeated after a 3-month CPAP therapy. Results: The FEV1/FVC ratio (p<0.01) and FEF25-75 (p=0.03) were significantly lower in the OSAS group than those in the control group. None of the subjects in the OSAS group demonstrated EIB attack after exercise challenge test. The percentages of macrophage in the induced sputum were significantly lower in the OSAS group both at baseline and post-exercise (p=0.03). Compared with baseline, the percentages of bronchial epithelial cells were significantly higher after exercise challenge test in both groups. The percentage of neutrophil at baseline was negatively correlated with the maximal FEV1 drop post exercise challenge test. Conclusions: The study confirmed airway inflammation exists in patients with severe OSAS. Although no EIB attack was found in patients with OSAS in this study, the correlation between airway inflammation and FEV1 changes post exercise challenge test suggests that the degree of airway inflammation plays a role in how airways would respond to exercise.

Topic Category 醫藥衛生 > 醫藥總論
醫學院 > 物理治療學研究所
Reference
  1. 1. Young T, Peppard PE, Gottlieb DJ. Epidemiology of obstructive sleep apnea: a population health perspective. Am J Respir Crit Care Med 2002;165:1217-39.
    連結:
  2. 2. 陳濘宏。阻塞型睡眠呼吸中止症。台灣醫學 2005;9:361-6。
    連結:
  3. 3. Loube DI, Gay PC, Strohl KP, Pack AI, White DP, Collop NA. Indications for positive airway pressure treatment of adult obstructive sleep apnea patients: a consensus statement. Chest 1999;115:863-6.
    連結:
  4. 4. Sabato R, Guido P, Salerno FG, Resta O, Spanevello A, Barbaro MP. Airway inflammation in patients affected by obstructive sleep apnea. Monaldi Arch Chest Dis 2006;65:102-5.
    連結:
  5. 5. Salerno FG, Carpagnano E, Guido P, Bonsignore MR, Roberti A, Aliani M, et al. Airway inflammation in patients affected by obstructive sleep apnea syndrome. Respir Med 2004;98:25-8.
    連結:
  6. 6. Carpagnano GE, Kharitonov SA, Resta O, Foschino-Barbaro MP, Gramiccioni E, Barnes PJ. Increased 8-isoprostane and interleukin-6 in breath condensate of obstructive sleep apnea patients. Chest 2002;122:1162-7.
    連結:
  7. 7. Hallstrand TS, Moody MW, Wurfel MM, Schwartz LB, Henderson WR Jr., Aitken ML. Inflammatory basis of exercise-induced bronchoconstriction. Am J Respir Crit Care Med 2005;172:679-86.
    連結:
  8. 8. Rundell KW, Jenkinson DM. Exercise-induced bronchospasm in the elite athlete. Sports Med 2002;32:583-600.
    連結:
  9. 9. Gotshall RW. Exercise-induced bronchoconstriction. Drugs 2002;62:1725-39.
    連結:
  10. 10. Otani K, Kanazawa H, Fujiwara H, Hirata K, Fujimoto S, Yoshikawa J. Determinants of the severity of exercise-induced bronchoconstriction in patients with asthma. J Asthma 2004;41:271-8.
    連結:
  11. 11. Helenius I, Lumme A, Haahtela T. Asthma, airway inflammation and treatment in elite athletes. Sports Med 2005;35:565-74.
    連結:
  12. 12. Lin CC, Lin CY. Obstructive sleep apnea syndrome and bronchial hyperreactivity. Lung 1995;173:117-26.
    連結:
  13. 13. Devouassoux G, Levy P, Rossini E, Pin I, Fior-Gozlan M, Henry M, et al. Sleep apnea is associated with bronchial inflammation and continuous positive airway pressure-induced airway hyperresponsiveness. J Allergy Clin Immunol 2007;119:597-603.
    連結:
  14. 14. Belda J, Leigh R, Parameswaran K, O'Byrne PM, Sears MR, Hargreave FE. Induced sputum cell counts in healthy adults. Am J Respir Crit Care Med 2000;161:475-8.
    連結:
  15. 15. Young T, Palta M, Dempsey J, Skatrud J, Weber S, Badr S. The occurrence of sleep-disordered breathing among middle-aged adults. N Engl J Med 1993;328:1230-5.
    連結:
  16. 16. Peppard PE, Young T, Palta M, Dempsey J, Skatrud J. Longitudinal study of moderate weight change and sleep-disordered breathing. JAMA 2000;284:3015-21.
    連結:
  17. 17. Wolf J, Lewicka J, Narkiewicz K. Obstructive sleep apnea: an update on mechanisms and cardiovascular consequences. Nutr Metab Cardiovasc Dis 2007;17:233-40.
    連結:
  18. 18. American Academy of Sleep Medicine Task Force. Sleep-related breathing disorders in adults: recommendations for syndrome definition and measurement techniques in clinical research. Sleep 1999;22:667-89.
    連結:
  19. 19. Watanabe T, Isono S, Tanaka A, Tanzawa H, Nishino T. Contribution of body habitus and craniofacial characteristics to segmental closing pressures of the passive pharynx in patients with sleep-disordered breathing. Am J Respir Crit Care Med 2002;165:260-5.
    連結:
  20. 20. Ryan CM, Bradley TD. Pathogenesis of obstructive sleep apnea. J Appl Physiol 2005;99:2440-50.
    連結:
  21. 21. Pack AI. Advances in sleep-disordered breathing. Am J Respir Crit Care Med 2006;173:7-15.
    連結:
  22. 22. Lavie L. Obstructive sleep apnoea syndrome--an oxidative stress disorder. Sleep Med Rev 2003;7:35-51.
    連結:
  23. 23. Bergeron C, Kimoff J, Hamid Q. Obstructive sleep apnea syndrome and inflammation. J Allergy Clin Immunol 2005;116:1393-6.
    連結:
  24. 24. Shamsuzzaman AS, Winnicki M, Lanfranchi P, Wolk R, Kara T, Accurso V, et al. Elevated C-reactive protein in patients with obstructive sleep apnea. Circulation 2002;105:2462-4.
    連結:
  25. 25. Sekosan M, Zakkar M, Wenig BL, Olopade CO, Rubinstein I. Inflammation in the uvula mucosa of patients with obstructive sleep apnea. Laryngoscope 1996;106:1018-20.
    連結:
  26. 26. Boyd JH, Petrof BJ, Hamid Q, Fraser R, Kimoff RJ. Upper airway muscle inflammation and denervation changes in obstructive sleep apnea. Am J Respir Crit Care Med 2004;170:541-6.
    連結:
  27. 27. Rubinstein I. Nasal inflammation in patients with obstructive sleep apnea. Laryngoscope 1995;105:175-7.
    連結:
  28. 28. Storms WW. Review of exercise-induced asthma. Med Sci Sports Exerc 2003;35:1464-70.
    連結:
  29. 29. Weiler JM, Bonini S, Coifman R, Craig T, Delgado L, Capao-Filipe M, et al. American Academy of Allergy, Asthma & Immunology Work Group report: exercise-induced asthma. J Allergy Clin Immunol 2007;119:1349-58.
    連結:
  30. 30. Wilber RL, Rundell KW, Szmedra L, Jenkinson DM, Im J, Drake SD. Incidence of exercise-induced bronchospasm in Olympic winter sport athletes. Med Sci Sports Exerc 2000;32:732-7.
    連結:
  31. 31. Weiler JM. Exercise-induced asthma: a practical guide to definitions, diagnosis, prevalence, and treatment. Allergy Asthma Proc 1996;17:315-25.
    連結:
  32. 32. Anderson SD, Daviskas E. The mechanism of exercise-induced asthma is. J Allergy Clin Immunol 2000;106:453-9.
    連結:
  33. 33. McFadden ER, Jr. Hypothesis: exercise-induced asthma as a vascular phenomenon. Lancet 1990;335:880-3.
    連結:
  34. 34. Anderson SD. Is there a unifying hypothesis for exercise-induced asthma? J Allergy Clin Immunol 1984;73:660-5.
    連結:
  35. 35. Rundell KW, Spiering BA, Baumann JM, Evans TM. Effects of montelukast on airway narrowing from eucapnic voluntary hyperventilation and cold air exercise. Br J Sports Med 2005;39:232-6.
    連結:
  36. 36. Leff JA, Busse WW, Pearlman D, Bronsky EA, Kemp J, Hendeles L, et al. Montelukast, a leukotriene-receptor antagonist, for the treatment of mild asthma and exercise-induced bronchoconstriction. N Engl J Med 1998;339:147-52.
    連結:
  37. 37. Anderson SD, Brannan JD. Exercise-induced asthma: is there still a case for histamine? J Allergy Clin Immunol 2002;109:771-3.
    連結:
  38. 38. Lee TH, Brown MJ, Nagy L, Causon R, Walport MJ, Kay AB. Exercise-induced release of histamine and neutrophil chemotactic factor in atopic asthmatics. J Allergy Clin Immunol 1982;70:73-81.
    連結:
  39. 39. Philip G, Pearlman DS, Villaran C, Legrand C, Loeys T, Langdon RB, et al. Single-dose montelukast or salmeterol as protection against exercise-induced bronchoconstriction. Chest 2007;132:875-83.
    連結:
  40. 40. Kakkar RK, Berry RB. Positive airway pressure treatment for obstructive sleep apnea. Chest 2007;132:1057-72.
    連結:
  41. 41. Patel SR, White DP, Malhotra A, Stanchina ML, Ayas NT. Continuous positive airway pressure therapy for treating sleepiness in a diverse population with obstructive sleep apnea: results of a meta-analysis. Arch Intern Med 2003;163:565-71.
    連結:
  42. 42. Hoffstein V, Viner S, Mateika S, Conway J. Treatment of obstructive sleep apnea with nasal continuous positive airway pressure. Patient compliance, perception of benefits, and side effects. Am Rev Respir Dis 1992;145:841-5.
    連結:
  43. 43. Yokoe T, Minoguchi K, Matsuo H, Oda N, Minoguchi H, Yoshino G, et al. Elevated levels of C-reactive protein and interleukin-6 in patients with obstructive sleep apnea syndrome are decreased by nasal continuous positive airway pressure. Circulation 2003;107:1129-34.
    連結:
  44. 44. Iesato K, Tatsumi K, Saibara T, Nakamura A, Terada J, Tada Y, et al. Decreased lipoprotein lipase in obstructive sleep apnea syndrome. Circ J 2007;71:1293-8.
    連結:
  45. 45. Phillips CL, Yang Q, Williams A, Roth M, Yee BJ, Hedner JA, et al. The effect of short-term withdrawal from continuous positive airway pressure therapy on sympathetic activity and markers of vascular inflammation in subjects with obstructive sleep apnoea. J Sleep Res 2007;16:217-25.
    連結:
  46. 46. Jelic S, Padeletti M, Kawut SM, Higgins C, Canfield SM, Onat D, et al. Inflammation, oxidative stress, and repair capacity of the vascular endothelium in obstructive sleep apnea. Circulation 2008;117:2270-8.
    連結:
  47. 47. Pepin JL, Leger P, Veale D, Langevin B, Robert D, Levy P. Side effects of nasal continuous positive airway pressure in sleep apnea syndrome. Study of 193 patients in two French sleep centers. Chest 1995;107:375-81.
    連結:
  48. 48. Spanevello A, Confalonieri M, Sulotto F, Romano F, Balzano G, Migliori GB, et al. Induced sputum cellularity. Reference values and distribution in normal volunteers. Am J Respir Crit Care Med 2000;162:1172-4.
    連結:
  49. 49. Pin I, Gibson PG, Kolendowicz R, Girgis-Gabardo A, Denburg JA, Hargreave FE, et al. Use of induced sputum cell counts to investigate airway inflammation in asthma. Thorax 1992;47:25-9.
    連結:
  50. 50. Carpagnano GE, Spanevello A, Sabato R, Depalo A, Turchiarelli V, Foschino Barbaro MP. Exhaled pH, exhaled nitric oxide, and induced sputum cellularity in obese patients with obstructive sleep apnea syndrome. Transl Res 2008;151:45-50.
    連結:
  51. 51. Pizzichini E, Pizzichini MM, Efthimiadis A, Evans S, Morris MM, Squillace D, et al. Indices of airway inflammation in induced sputum: reproducibility and validity of cell and fluid-phase measurements. Am J Respir Crit Care Med 1996;154:308-17.
    連結:
  52. 52. Hofstra WB, Sont JK, Sterk PJ, Neijens HJ, Kuethe MC, Duiverman EJ. Sample size estimation in studies monitoring exercise-induced bronchoconstriction in asthmatic children. Thorax 1997;52:739-41.
    連結:
  53. 53. Dahlen B, O'Byrne PM, Watson RM, Roquet A, Larsen F, Inman MD. The reproducibility and sample size requirements of exercise-induced bronchoconstriction measurements. Eur Respir J 2001;17:581-8.
    連結:
  54. 55. Djukanovic R, Sterk, PJ. An atlas of induced sputum: an aid for research and diagnosis. 1st ed. New York: The Parthenon Publishing Group; 2004.
    連結:
  55. 56. American Thoracic Society. Standardization of Spirometry, 1994 Update. Am J Respir Crit Care Med 1995;152:1107-36.
    連結:
  56. 58. Crapo RO, Casaburi R, Coates AL, Enright PL, Hankinson JL, Irvin CG, et al. Guidelines for methacholine and exercise challenge testing-1999. Am J Respir Crit Care Med 2000;161:309-29.
    連結:
  57. 59. Anderson SD, Rodwell LT, Du Toit J, Young IH. Duration of protection by inhaled salmeterol in exercise-induced asthma. Chest 1991;100:1254-60.
    連結:
  58. 60. Rubinstein I, Zamel N, DuBarry L, Hoffstein V. Airflow limitation in morbidly obese, nonsmoking men. Ann Intern Med 1990;112:828-32.
    連結:
  59. 61. Babb TG, DeLorey DS, Wyrick BL, Gardner PP. Mild obesity does not limit change in end-expiratory lung volume during cycling in young women. J Appl Physiol 2002;92:2483-90.
    連結:
  60. 62. Unterborn J. Pulmonary function testing in obesity, pregnancy, and extremes of body habitus. Clin Chest Med 2001;22:759-67.
    連結:
  61. 63. Jenkins SC, Moxham J. The effects of mild obesity on lung function. Respir Med 1991;85:309-11.
    連結:
  62. 64. Depalo A, Carpagnano GE, Spanevello A, Sabato R, Cagnazzo MG, Gramiccioni C, et al. Exhaled NO and iNOS expression in sputum cells of healthy, obese and OSA subjects. J Intern Med 2008;263:70-8.
    連結:
  63. 65. Bottai M, Pistelli F, Di Pede F, Carrozzi L, Baldacci S, Matteelli G, et al. Longitudinal changes of body mass index, spirometry and diffusion in a general population. Eur Respir J 2002;20:665-73.
    連結:
  64. 67. Vianna EO, Gutierrez MR, Barbieri MA, Caldeira RD, Bettiol H, Da Silva AA. Respiratory effects of tobacco smoking among young adults. Am J Med Sci 2008;336:44-9.
    連結:
  65. 68. McFadden ER, Jr., Linden DA. A reduction in maximum mid-expiratory flow rate. A spirographic manifestation of small airway disease. Am J Med 1972;52:725-37.
    連結:
  66. 70. Stauffer JL, White DP, Zwillich CW. Pulmonary function in obstructive sleep apnea. Relationships to pharyngeal resistance and cross-sectional area. Chest 1990;97:302-7.
    連結:
  67. 71. Bonay M, Nitenberg A, Maillard D. Should flow-volume loop be monitored in sleep apnea patients treated with continuous positive airway pressure? Respir Med 2003;97:830-4.
    連結:
  68. 72. Upton MN, Smith GD, McConnachie A, Hart CL, Watt GC. Maternal and personal cigarette smoking synergize to increase airflow limitation in adults. Am J Respir Crit Care Med 2004;169:479-87.
    連結:
  69. 74. Warren JB, Jennings SJ, Clark TJ. Effect of adrenergic and vagal blockade on the normal human airway response to exercise. Clin Sci (Lond) 1984;66:79-85.
    連結:
  70. 75. Gotshall RW. Airway response during exercise and hyperpnoea in non-asthmatic and asthmatic individuals. Sports Med 2006;36:513-27.
    連結:
  71. 76. Crimi E, Pellegrino R, Smeraldi A, Brusasco V. Exercise-induced bronchodilation in natural and induced asthma: effects on ventilatory response and performance. J Appl Physiol 2002;92:2353-60.
    連結:
  72. 77. Hartert TV, Dworski RT, Mellen BG, Oates JA, Murray JJ, Sheller JR. Prostaglandin E(2) decreases allergen-stimulated release of prostaglandin D(2) in airways of subjects with asthma. Am J Respir Crit Care Med 2000;162:637-40.
    連結:
  73. 78. Holgate ST, Peters-Golden M, Panettieri RA, Henderson WR Jr. Roles of cysteinyl leukotrienes in airway inflammation, smooth muscle function, and remodeling. J Allergy Clin Immunol 2003;111:S18-34; discussion S-6.
    連結:
  74. 79. Hallstrand TS, Moody MW, Aitken ML, Henderson WR Jr. Airway immunopathology of asthma with exercise-induced bronchoconstriction. J Allergy Clin Immunol 2005;116:586-93.
    連結:
  75. 80. Gao Y, Vanhoutte PM. Removal of the epithelium potentiates acetylcholine in depolarizing canine bronchial smooth muscle. J Appl Physiol 1988;65:2400-5.
    連結:
  76. 81. Hashimoto S, Matsumoto K, Gon Y, Nakayama T, Takeshita I, Horie T. Hyperosmolarity-induced interleukin-8 expression in human bronchial epithelial cells through p38 mitogen-activated protein kinase. Am J Respir Crit Care Med 1999;159:634-40.
    連結:
  77. 82. Li AM, Hung E, Tsang T, Yin J, So HK, Wong E, et al. Induced sputum inflammatory measures correlate with disease severity in children with obstructive sleep apnoea. Thorax 2007;62:75-9.
    連結:
  78. 83. Sutherland TJ, Cowan JO, Young S, Goulding A, Grant AM, Williamson A, et al. The association between obesity and asthma: interactions between systemic and airway inflammation. Am J Respir Crit Care Med 2008;178:469-75.
    連結:
  79. 84. Kay AB, Corrigan CJ. Asthma. Eosinophils and neutrophils. Br Med Bull 1992;48:51-64.
    連結:
  80. 85. Sutherland ER, Martin RJ. Airway inflammation in chronic obstructive pulmonary disease: comparisons with asthma. J Allergy Clin Immunol 2003;112:819-27; quiz 28.
    連結:
  81. 86. Tetley TD. Inflammatory cells and chronic obstructive pulmonary disease. Curr Drug Targets Inflamm Allergy 2005;4:607-18.
    連結:
  82. 87. McLachlan CR, Poulton R, Car G, Cowan J, Filsell S, Greene JM, et al. Adiposity, asthma, and airway inflammation. J Allergy Clin Immunol 2007;119:634-9.
    連結:
  83. 88. 陳文郁。肥胖停經後婦女運動中機械性換氣限制、呼吸模式與換氣反應之探討。台灣大學物理治療學研究所。碩士論文;2009。
    連結:
  84. 89. Litonjua AA, Sparrow D, Celedon JC, DeMolles D, Weiss ST. Association of body mass index with the development of methacholine airway hyperresponsiveness in men: the Normative Aging Study. Thorax 2002;57:581-5.
    連結:
  85. 54. Haby MM, Peat JK, Mellis CM, Anderson SD, Woolcock AJ. An exercise challenge for epidemiological studies of childhood asthma: validity and repeatability. Eur Respir J 1995;8:729-36.
  86. 57. Crapo RO, Morris AH, Gardner RM. Reference spirometric values using techniques and equipment that meet ATS recommendations. Am Rev Respir Dis 1981;123:659-64.
  87. 66. Padmavathy KM. Comparative study of pulmonary function variables in relation to type of smoking. Indian J Physiol Pharmacol 2008;52:193-6.
  88. 69. Ghabashi AE, Iqbal M. Obesity and its correlation with spirometric variables in patients with asthma. MedGenMed 2006;8:58.
  89. 73. Joos GF, O'Connor B, Anderson SD, Chung F, Cockcroft DW, Dahlen B, et al. Indirect airway challenges. Eur Respir J 2003;21:1050-68.