透過您的圖書館登入
IP:18.188.40.207
  • 學位論文

液滴在球形孔洞中之振盪電泳行為

Dynamic Electrophoretic Behavior of a Liquid Drop in a Spherical Cavity

指導教授 : 李克強

摘要


本研究主要是對球形液滴在球形孔洞中於交流電場下之振盪電泳行為,進行數值模擬並探討。我們以Zydney於1995年所提出的球形孔洞模型來描述此系統,所要求解的是一組電場、濃度場及流場相互耦合的電聲方程組。經過適當的假設與線性化之後,利用假性光譜法來求解此高頻系統。我們發現,由於離子雲的扭曲不可忽略,極化效應會使得振盪電泳速度產生一個極大值,並且振盪電泳速度的相角會有超前電場的現象產生。當液滴的表面電位變高或電雙層厚度變薄時,離子雲扭曲的程度會更加明顯,使得振盪電泳速度明顯上升。而當液滴的黏度越高時,振盪電泳速度會越低。當液滴的體積分率越大時,孔洞會壓縮液滴電雙層,使得振盪電泳速度減小。

並列摘要


In this study, we investigate the dynamic electrophoretic mobility of a spherical liquid drop in a spherical cavity. The cavity model suggested by Zydney in 1995 is adopted to describe our system, and what we built is a set of electro-acoustic equations composed of the coupled electric field, the flow field, and the ion concentration field. With appropriate assumptions and simplifications, we are able to solve this set of electro-acoustic equations by the pseudo-spectral method. Given that the ion-cloud distortion can not be neglected, the effect of ion polarization disposes the dynamic mobility to a local maximum and a phase lead. When the surface potential is high or the thickness of the double layer is thin, the extent of the ion-cloud distortion will be more prominent. It is suggested that the lower the viscosity of a non-conducting liquid drop, the greater its dynamic mobility. As the volume fraction of the liquid drop is so large that the cavity compresses it, the dynamic mobility of the liquid drop will substantially decrease.

參考文獻


53.唐于博,”軟球粒子各種電泳現象暨表面調節硬球粒子對平板之電泳運動之探討”, 國立台灣大學化學工程學系博士論文,民國93年6月。
4.Van de Ven, Theo G. M., “Colloidal Hydrodynamics”, London ; San Diego : Academic Press, (1989).
1.Hunter, R.J., “Foundations of Colloid Science.”, Vols. I and II, Clarendon Press, Oxford, (1989).
2.Masliyah, J. H., “Electrokinetic Transport Phenomena” , Edmonton, Alta. : Alberta Oil Sands Technology and Research Authority, (1994).
7.Von Smoluchowski, M., Z. Phys. Chem., 92, 129 (1918).

延伸閱讀