Title

奈米氧化鋅微粒對中樞神經影響之研究

Translated Titles

Effects of zinc oxide nanoparticles exposure on central nervous system in Sprague-Dawley rats

DOI

10.6342/NTU201602331

Authors

楊于葶

Key Words

奈米氧化鋅(ZnO-NPs) ; 空間學習與記憶 ; 鋅 ; 氧化壓力 ; 中樞神經 ; 莫氏水迷津 ; 舉臂式十字型迷宮 ; Morris Water Maze ; Elevated-plus maze ; Zinc oxide nanoparticle ; Central nervous system ; spatial learning and memory ; Zinc ; Oxidative stress

PublicationName

臺灣大學職業醫學與工業衛生研究所學位論文

Volume or Term/Year and Month of Publication

2016年

Academic Degree Category

碩士

Advisor

鄭尊仁

Content Language

繁體中文

Chinese Abstract

近年來因為奈米科技快速蓬勃發展,奈米微粒在生活中的應用廣泛,奈米氧化鋅(Zinc oxide, ZnO-NPs)是最常使用且重要的奈米材料之一,也是工作常見的毒性物質。先前研究顯示奈米微粒相較於粒徑大的微粒,其對身體產生的毒性和風險較大,其中在許多種類的奈米微粒之中,ZnO-NPs相較於CuO、TiO2等金屬氧化物,有著較強的毒性,因此探討暴露ZnO-NPs對健康潛在的毒性成為了重要的議題。有許多文獻探討奈米氧化鋅對呼吸道的毒性,顯示ZnO-NPs會誘發呼吸道過敏相關的反應、肺部發炎反應、氧化壓力增加還有系統性的發炎及心肺損傷。但對於ZnO-NPs的中樞神經毒性尚不明確,有研究顯示ZnO-NPs會造成大鼠空間學習能力受損,但結果並不一致。此外,有關ZnO-NPs中樞神經系統毒性還缺乏急性呼吸道暴露的探討,因此,本研究目的主要是想探討奈米氧化鋅微粒急性呼吸道暴露對大鼠中樞神經系統的影響。 本研究使用了八周大的SD健康大鼠,分別配置5 mg/kg、10 mg/kg、20 mg/kg三種劑量的ZnO-NPs懸浮液以及控制組,以氣管灌注(Intratracheal Instillation)方式進行急性暴露且分為兩組,第一組為暴露完24hr後隔天進行舉臂式十字型迷宮後進行犧牲,並取出大鼠腦部將海馬迴、大腦皮質、小腦三個區域進行促發炎細胞激素分析、分析8-OHdG、8-NO2Gua和鋅濃度,第二組是暴露完後隔天進行5天的莫氏水迷津及舉臂式十字型迷宮行為實驗後,取腦部及肺部進行病理切片。 本研究的行為實驗結果顯示暴露不同劑量的奈米氧化鋅,沒有造成大鼠空間學習及焦慮情緒的產生。量測海馬迴、大腦皮質、小腦細胞激素,結果顯示,在海馬迴的IL-1α,小腦的IL-6、TNF-α,大腦皮質的IL-1α、IL-1β、IL-6,ZnO-NPs在高劑量暴露組,其細胞激素濃度顯著低於控制組。8-OHdG的部分,海馬迴及小腦的高劑量組8-OHdG顯著增加,8-NO2Gua則沒有顯著差異。在鋅濃度的部分,小腦高劑量組的鋅顯著較控制組高,但皮質則無變化。行為實驗組的病理結果顯示於腦部無病理變化的產生,肺部則是隨著暴露ZnO-NPs的劑量越高,肺部的病理變化較嚴重。 本研究結論是ZnO-NPs暴露對中樞神經產生的影響,機制上鋅離子似乎扮演重要的角色,會造成氧化壓力增加、細胞激素下降,但產生的效應會根據腦區的不同有所差異,小腦可能較容易受到影響。本研究對ZnO-NPs急性呼吸道暴露影響中樞神經的可能機制和效應提供一些初步的結果,實際的機制和其毒性仍需要進一步的探討。

English Abstract

With the rapid development of nanotechnology, nanomaterials have been used widely in human life. Studies have shown that nanomaterials have greater toxicity than larger particles on the same masses. Zinc oxide as one of the most important and useful nanomaterials, have been widely applied in commercial products. Thus, the potential toxicity of zinc oxide has become an important issue. Many researchers have explored the respiratory toxicity of ZnO-NPs. However, few studies investigated central nervous system toxicity of ZnO-NPs. Previous studies showed that ZnO-NPs might impair spatial learning ability in rats, however, the outcome was inconsistent. Thus, the aim of our study is to explore central nervous system toxicity and the underlying mechanisms induced by ZnO-NPs. In our present study, 8-week-old Sprague-Dawley rats were exposed to ZnO-NPs at the dose of 5 mg/kg, 10 mg/kg and 20 mg/kg respectively via intratracheal instillation (IT). One group (N=5) was sacrificed 24 hrs after the exposure to ZnO-NPs. We collected brain tissue including hippocampus, cerebellum and cortex to analyze proinflammatory cytokines, oxidative stress, nitrative stress and zinc content. Another group (N=10) underwent morris water maze and elevated-plus maze for 5 days. In the next day, rats were sacrificed and the brain and lung tissue were collected for pathological examination. Our results showed that ZnO-NPs exposure didn’t affect spatial learning ability and anxiety. Results showed that ZnO-NPs exposure caused decreased cytokine level in high dose such as IL-1α in hippocampus, IL-1β, IL-6 and TNF-αin cerebellum and IL-1α、IL-1βand IL-6 in cortex. Oxidative stress marker 8-OHdG increased in hippocampus and cerebellum. There was no difference between groups for 8-NO2Gua. Zinc levels increased in cerebellum but not in cortex. Histology examination showed a dose-response inflammation in lung. However, there was no changes in brain. We conclude that zinc might play an important role in central nervous system toxicity caused by ZnO-NPs. Zinc cause a decrease in cytokines and an increase in oxidative stress, but the effects are not consistent through brain regions. Cerebellum seems vulnerable to ZnO-NPs. Our study sheds some light on the possible mechanisms and effects caused by ZnO-NPs, however, the exact mechanisms required further study.

Topic Category 醫藥衛生 > 預防保健與衛生學
公共衛生學院 > 職業醫學與工業衛生研究所
Reference
  1. 1. Oberdörster G, Oberdörster E, Oberdörster J: Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles. Environmental Health Perspectives 2005, 113(7):823-839.
    連結:
  2. 2. Staggers N, McCasky T, Brazelton N, Kennedy R: Nanotechnology: the coming revolution and its implications for consumers, clinicians, and informatics. Nursing Outlook 2008, 56:268-274.
    連結:
  3. 3. Rasmussen JW, Martinez E, Louka P, Wingett DG: Zinc Oxide Nanoparticles for Selective Destruction of Tumor Cells and Potential for Drug Delivery Applications. Expert opinion on drug delivery 2010, 7(9):1063-1077.
    連結:
  4. 5. Maynard AD, Aitken RJ: Assessing exposure to airborne nanomaterials: current abilities and future requirements. Nanotoxicology 2007, 1(1):26-41.
    連結:
  5. 6. Li CH, Shen CC, Cheng YW, Huang SH, Wu CC, Kao CC: Organ biodistribution, clearance, and genotoxicity of orally administered zinc oxide nanoparticles in mice. Nanotoxicology 2012, 6:746-756.
    連結:
  6. 7. Nel A, Xia T, Madler L, Li N: Toxic potential of materials at the nanolevel. Science 2006, 311(5761):622-627.
    連結:
  7. 8. Oberdorster G, Ferin J, Lehnert BE: Correlation between particle size, in vivo particle persistence and lung injury. Environ Health Perspect 1994, 102(5):173-179.
    連結:
  8. 9. Ho M, Wu KY, Chein HM, Chen LC, Cheng TJ: Pulmonary toxicity of inhaled nanoscale and fine zinc oxide particles: mass and surface area as an exposure metric. Inhal Toxicol 2011, 23(14):947-956.
    連結:
  9. 10. Brown DM, Wilson MR, MacNee W, Stone V, Donaldson K: Size-dependent proinflammatory effects of ultrafine polystyrene particles: A role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol Appl Pharmacol 2001, 175(191-199).
    連結:
  10. 11. Greene LE, Yuhas BD, Law M, Zitoun D, Yang P: Solution-grown zinc oxide nanowires. Inorg Chem 2006, 45:7535-7543.
    連結:
  11. 12. Heinlaan M, Ivask A, Blinova I, Dubourguier H-C, Kahru A: Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 2008, 71(7):1308-1316.
    連結:
  12. 13. Cho WS, Duffin R, Howie SE, Scotton CJ, Wallace WA, Macnee W, Bradley M, Megson IL, Donaldson K: Progressive severe lung injury by zinc oxide nanoparticles; the role of Zn2+ dissolution inside lysosomes. Part Fibre Toxicol 2011, 8:27.
    連結:
  13. 14. Huang KL, Lee YH, Chen HI, Liao HS, Chiang BL, Cheng TJ: Zinc oxide nanoparticles induce eosinophilic airway inflammation in mice. J Hazard Mater 2015, 297:304-312.
    連結:
  14. 15. Cho WS, Duffin R, Poland CA, Howie SE, MacNee W, Bradley M, Megson IL, Donaldson K: Metal oxide nanoparticles induce unique inflammatory footprints in the lung: important implications for nanoparticle testing. Environ Health Perspect 2010, 118(12):1699-1706.
    連結:
  15. 16. Fukui H, Horie M, Endoh S, Kato H, Fujita K, Nishio K, Komaba LK, Maru J, Miyauhi A, Nakamura A et al: Association of zinc ion release and oxidative stress induced by intratracheal instillation of ZnO nanoparticles to rat lung. Chem Biol Interact 2012, 198(1-3):29-37.
    連結:
  16. 17. Sayes CM, Reed KL, Warheit DB: Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicol Sci 2007, 97(1):163-180.
    連結:
  17. 18. Chuang HC, Juan HT, Chang CN, Yan YH, Yuan TH, Wang JS, Chen HC, Hwang YH, Lee CH, Cheng TJ: Cardiopulmonary toxicity of pulmonary exposure to occupationally relevant zinc oxide nanoparticles. Nanotoxicology 2014, 8(6):593-604.
    連結:
  18. 19. Sharma V, Singh P, Pandey AK, Dhawan A: Induction of oxidative stress, DNA damage and apoptosis in mouse liver after sub-acute oral exposure to zinc oxide nanoparticles. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 2012, 745(1–2):84-91.
    連結:
  19. 20. Oberdörster G, Stone V, Donaldson K: Toxicology of nanoparticles: a historical perspective. Nanotoxicology 2007, 1(1):2-25.
    連結:
  20. 21. Pujalté I, Passagne I, Brouillaud B, Tréguer M DE, Ohayon-Courtès C, B La: Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells. Particle and Fibre Toxicology 2011, 8(10).
    連結:
  21. 22. Hackenberg S, Scherzed A, Technau A, Kessler M, Froelich K, Ginzkey C, Koehler C, Burghartz M, Hagen R, Kleinsasser N: Cytotoxic, genotoxic and pro-inflammatory effects of zinc oxide nanoparticles in human nasal mucosa cells in vitro. Toxicology in Vitro 2011, 25(3):657-663.
    連結:
  22. 23. Landsiede lR, Ma-Hock L, Kroll A, Hahn D, Schnekenburger J, Wiench K, Wohlleben W: Testing metal-oxide nanomaterials for human safety. Adv Mater 2010, 22(24):2601-2627.
    連結:
  23. 24. Ayres JG, Borm P, Cassee FR, Castranova V, Donaldson K, Ghio A, Harrison RM, Hider R, Kelly F, Kooter IM et al: Evaluating the toxicity of airborne particulate matter and nanoparticles by measuring oxidative stress potential – a workshop report and consensus statement. . Inhal Toxicol 2008, 20(1):75-99.
    連結:
  24. 25. Xia T, M. K, Liong M, Madler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE: Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2008, 2(2121-2134).
    連結:
  25. 26. Han D, Tian Y, Zhang T, Ren G, Yang Z: Nano-zinc oxide damages spatial cognition capability via over-enhanced long-term potentiation in hippocampus of Wistar rats. Nanomedicine 2011, 6:1453-1461.
    連結:
  26. 27. Xie Y, Wang Y, Zhang T, Ren G, Yang Z: Effects of nanoparticle zinc oxide on spatial cognition and synaptic plasticity in mice with depressive-like behaviors. Journal of Biomedical Science 2012, 19(1):14-14.
    連結:
  27. 28. Amara S, Ben-Slama I, Mrad I, Rihane N, Jeljeli M, El-Mir L, Ben-Rhouma K, Rachidi W, Seve M, Abdelmelek H et al: Acute exposure to zinc oxide nanoparticles does not affect the cognitive capacity and neurotransmitters levels in adult rats. Nanotoxicology 2014, 8 Suppl 1:208-215.
    連結:
  28. 29. Tian L, Lin B, Wu L, Li K, Liu H, Yan J, Liu X, Xi Z: Neurotoxicity induced by zinc oxide nanoparticles: age-related differences and interaction. Scientific Reports 2015, 5:16117.
    連結:
  29. 30. Torabi M, Kesmati M, Harooni HE, Varzi HN: Effects of nano and conventional Zinc Oxide on anxiety-like behavior in male rats. Indian Journal of Pharmacology 2013, 45(5):508-512.
    連結:
  30. 31. Amara S, Slama IB, Omri K, Ghoul JE, Mir LE, Rhouma KB, Abdelmelek H, Sakly M: Effects of nanoparticle zinc oxide on emotional behavior and trace elements homeostasis in rat brain. Toxicology and industrial health 2015, 31(12):1202-1209.
    連結:
  31. 32. Ben-Slama I, Amara S, Mrad I, Rihane N, Omri K, Ghoul JE, Mir LE, Abdelmelek KBRH, Sakly M: Sub-acute oral toxicity of zinc oxide nanoparticles in male rats. Journal of Nanomedicine & Nanotechnology 2015, 2015.
    連結:
  32. 33. Elder A, Gelein R, Silva V, Feikert T, Opanashuk L, Carter J, Potter R, Maynard A, Ito Y, Finkelstein J et al: Translocation of Inhaled Ultrafine Manganese Oxide Particles to the Central Nervous System. Environ Health Perspect 2006, 114:1172-1178.
    連結:
  33. 34. Kao YY, Cheng TJ, Yang DM, Wang CT, Chiung YM, Liu P: Demonstration of an olfactory bulb–brain translocation pathway for ZnO nanoparticles in rodent cells in vitro and in vivo. J Mol Neurosci 2012a, 48:464-471.
    連結:
  34. 35. Kwon JT, Hwang SK, Jin H, Kim DS, Minai-Tehrani A, Yoon HJ, Choi M, Yoon TJ, Han DY, Kang YW et al: Body distribution of inhaled fluorescent magnetic nanoparticles in the mice. J Occup Health 2008, 50(1):1-6.
    連結:
  35. 36. Sharif R, Thomas P, Zalewski P, Fenech M: The role of zinc in genomic stability. Mutat Res 2012, 733(1-2):111-121.
    連結:
  36. 37. Oteiza PI: Zinc and the modulation of redox homeostasis. Free Radical Biology and Medicine 2012, 53(9):1748-1759.
    連結:
  37. 38. Zalewski PD, Forbes IJ, Betts WH: Correlation of apoptosis with change in intracellular labile Zn(II) using zinquin [(2-methyl-8-p-toluenesulphonamido-6-quinolyloxy)acetic acid], a new specific fluorescent probe for Zn(II). Biochemical Journal 1993, 296(Pt 2):403-408.
    連結:
  38. 39. Fraker PJ, Telford WG: A reappraisal of the role of zinc in life and death decisions of cells. Proc Soc Exp Biol Med 1997, 215(3):229-236.
    連結:
  39. 40. Bitanihirwe BK, Cunningham MG: Zinc: the brain's dark horse. Synapse 2009, 63(11):1029-1049.
    連結:
  40. 41. Sensi S, Jeng J-M: Rethinking the excitotoxic ionic milieu: the emerging role of Zn 2+ in ischemic neuronal injury. Current molecular medicine 2004, 4(2):87-111.
    連結:
  41. 42. Frederickson CJ, Koh J-Y, Bush AI: The neurobiology of zinc in health and disease. Nature reviews Neuroscience 2005, 6(6):449-462.
    連結:
  42. 43. Colvin RA, Fontaine CP, Laskowski M, Thomas D: Zn2+ transporters and Zn2+ homeostasis in neurons. Eur J Pharmacol 2003, 479(1-3):171-185.
    連結:
  43. 44. Colvin RA, Bush AI, Volitakis I, Fontaine CP, Thomas D, Kikuchi K, Holmes WR: Insights into Zn2+ homeostasis in neurons from experimental and modeling studies. Am J Physiol Cell Physiol 2008, 294(3):C726-742.
    連結:
  44. 45. Bao B, Prasad AS, Beck FWJ, Godmere M: Zinc modulates mRNA levels of cytokines. American Journal of Physiology - Endocrinology and Metabolism 2003, 285(5):E1095-E1102.
    連結:
  45. 46. Weiss JH, Sensi SL, Koh JY: Zn2+: a novel ionic mediator of neural injury in brain disease. Trends in Pharmacological Sciences 2000, 21(10):395-401.
    連結:
  46. 47. Cuajungco MP, Lees GJ: Zinc and Alzheimer's disease: is there a direct link? Brain Res Brain Res Rev 1997, 23(3):219-236.
    連結:
  47. 48. Ibs K-H, Rink L: Zinc-altered immune function. The Journal of nutrition 2003, 133(5):1452S-1456S.
    連結:
  48. 49. Huang X, Cuajungco MP, Atwood CS, Moir RD, Tanzi RE, Bush AI: Alzheimer's disease, beta-amyloid protein and zinc. J Nutr 2000, 130(5S Suppl):1488S-1492S.
    連結:
  49. 50. Suh SW, Jensen KB, Jensen MS, Silva DS, Kesslak PJ, Danscher G, Frederickson CJ: Histochemically-reactive zinc in amyloid plaques, angiopathy, and degenerating neurons of Alzheimer's diseased brains. Brain research 2000, 852(2):274-278.
    連結:
  50. 51. Kao YY, Chen YC, Cheng TJ, Chiung YM, Liu PS: Zinc oxide nanoparticles interfere with zinc ion homeostasis to cause cytotoxicity. Toxicol Sci 2012b, 125(2):467-472.
    連結:
  51. 52. Koh JY, Suh SW, Gwag BJ, He YY, Hsu CY, Choi DW: The role of zinc in selective neuronal death after transient global cerebral ischemia. Science 1996, 272(5264):1013-1016.
    連結:
  52. 54. Dheen ST, Kaur C, Ling EA: Microglial activation and its implications in the brain diseases. Curr Med Chem 2007, 14(11):1189-1197.
    連結:
  53. 55. Zhao J, Xu L, Zhang T, Ren G, Yang Z: Influences of nanoparticle zinc oxide on acutely isolated rat hippocampal CA3 pyramidal neurons. Neurotoxicology 2009, 30:220-230.
    連結:
  54. 56. Frederickson RE, Frederickson CJ, Danscher G: In situ binding of bouton zinc reversibly disrupts performance on a spatial memory task. Behav Brain Res 1990, 38(1):25-33.
    連結:
  55. 57. Harman D: Free radical involvement in aging. Pathophysiology and therapeutic implications. Drugs Aging 1993, 3(1):60-80.
    連結:
  56. 58. Stohs SJ, Bagchi D: Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 1995, 18(2):321-336.
    連結:
  57. 59. Harman D: Free radicals, aging and degenerative disease. NY: Liss 1986, 150.
    連結:
  58. 61. Beckman KB, Ames BN: The free radical theory of aging matures. Physiological reviews 1998, 78(2):547-581.
    連結:
  59. 62. Kawanishi S, Hiraku Y: Oxidative and nitrative DNA damage as biomarker for carcinogenesis with special reference to inflammation. Antioxidants & redox signaling 2006, 8(5-6):1047-1058.
    連結:
  60. 63. Floyd RA, Watson JJ, Wong PK, Altmiller DH, Rickard RC: Hydroxyl free radical adduct of deoxyguanosine: sensitive detection and mechanisms of formation. Free Radic Res Commun 1986, 1(3):163-172.
    連結:
  61. 65. Pilger A, Rüdiger H: 8-Hydroxy-2′-deoxyguanosine as a marker of oxidative DNA damage related to occupational and environmental exposures. International archives of occupational and environmental health 2006, 80(1):1-15.
    連結:
  62. 67. Fu PP, Xia Q, Sun X, Yu H: Phototoxicity and Environmental Transformation of Polycyclic Aromatic Hydrocarbons (PAHs)—Light-Induced Reactive Oxygen Species, Lipid Peroxidation, and DNA Damage. Journal of Environmental Science and Health, Part C 2012, 30(1):1-41.
    連結:
  63. 68. Bodamyali T, Stevens CR, Blake DR, Winyard PG: Reactive oxygen/nitrogen species and acute inflammation: a physiological process. In: Free radicals and inflammation. Springer; 2000: 11-16.
    連結:
  64. 69. Deng X, Luan Q, Chen W, Wang Y, Wu M, Zhang H, Jiao Z: Nanosized zinc oxide particles induce neural stem cell apoptosis. Nanotechnology 2009, 20:115101.
    連結:
  65. 70. Sharma V, Shukla RK, Saxena N, Parmar D, Das M, Dhawan A: DNA damaging potential of zinc oxide nanoparticles in human epidermal cells. Toxicol Lett 2009, 185(3):211-218.
    連結:
  66. 71. Brewer GJ, Kanzer SH, Zimmerman EA, Molho ES, Celmins DF, Heckman SM, Dick R: Subclinical zinc deficiency in Alzheimer's disease and Parkinson's disease. Dis Other Demen 2010, 25:572-575.
    連結:
  67. 72. Matés JM, Pérez-Gómez C, Núñez de Castro I: Antioxidant enzymes and human diseases. . Clin Biochem 1999, 32:595-603.
    連結:
  68. 73. Ohshima H, Sawa T, Akaike T: 8-nitroguanine, a product of nitrative DNA damage caused by reactive nitrogen species: formation, occurrence, and implications in inflammation and carcinogenesis. Antioxidants & redox signaling 2006, 8(5-6):1033-1045.
    連結:
  69. 74. Inoue S, Kawanishi S: Oxidative DNA damage induced by simultaneous generation of nitric oxide and superoxide. FEBS letters 1995, 371(1):86-88.
    連結:
  70. 75. Yermilov V, Rubio J, Becchi M, Friesen MD, Pignatelli B, Ohshima H: Formation of 8-nitroguanine by the reaction of guanine with peroxynitrite in vitro. Carcinogenesis 1995, 16(9):2045-2050.
    連結:
  71. 77. Antonini JM, Roberts JR, Chapman RS, Soukup JM, Ghio AJ, Sriram K: Pulmonary toxicity and extrapulmonary tissue distribution of metals after repeated exposure to different welding fumes. Inhalation toxicology 2010, 22(10):805-816.
    連結:
  72. 78. Stone KC, Mercer RR, Gehr P, Stockstill B, Crapo JD: Allometric relationships of cell numbers and size in the mammalian lung. Am J Respir Cell Mol Biol 1992, 6(2):235-243.
    連結:
  73. 79. Wu KY, Scheller N, Ranasinghe A, Yen TY, Sangaiah R, Giese R, Swenberg JA: A gas chromatography/electron capture/negative chemical ionization high-resolution mass spectrometry method for analysis of endogenous and exogenous N7-(2-hydroxyethyl)guanine in rodents and its potential for human biological monitoring. Chem Res Toxicol 1999, 12(8):722-729.
    連結:
  74. 81. Li C-S, Wu K-Y, Chang-Chien G-P, Chou C-C: Analysis of Oxidative DNA Damage 8-Hydroxy-2‘-deoxyguanosine as a Biomarker of Exposures to Persistent Pollutants for Marine Mammals. Environmental Science & Technology 2005, 39(8):2455-2460.
    連結:
  75. 82. Yermilov V, Rubio J, Ohshima H: Formation of 8-nitroguanine in DNA treated with peroxynitrite in vitro and its rapid removal from DNA by depurination. FEBS Lett 1995, 376(3):207-210.
    連結:
  76. 83. Hsieh YS, Chen BC, Shiow SJ, Wang HC, Hsu JD, Wang CJ: Formation of 8-nitroguanine in tobacco cigarette smokers and in tobacco smoke-exposed Wistar rats. Chem Biol Interact 2002, 140(1):67-80.
    連結:
  77. 84. Shackelford C, Long G, Wolf J, Okerberg C, Herbert R: Qualitative and quantitative analysis of nonneoplastic lesions in toxicology studies. Toxicol Pathol 2002, 30(1):93-96.
    連結:
  78. 85. Oka A, Belliveau MJ, Rosenberg PA, Volpe JJ: Vulnerability of oligodendroglia to glutamate: pharmacology, mechanisms, and prevention. J Neurosci 1993, 13(4):1441-1453.
    連結:
  79. 86. Johnston MV: Neurotransmitters and vulnerability of the developing brain. Brain Dev 1995, 17(5):301-306.
    連結:
  80. 87. Win-Shwe T-T, Yamamoto S, Fujitani Y, Hirano S, Fujimaki H: Nanoparticle-rich diesel exhaust affects hippocampal-dependent spatial learning and NMDA receptor subunit expression in female mice. Nanotoxicology 2012, 6(5):543-553.
    連結:
  81. 88. Song W, Zhang J, Zhang J: Acute toxicity of different sized ZnO nanoparticles in mice after intratracheal administration. In: Bioinformatics and Biomedical Engineering (iCBBE), 2010 4th International Conference on: 2010: IEEE; 2010: 1-4.
    連結:
  82. 89. Andrade MMM, Tomé MF, Santiago ES, Lúcia-Santos A, de Andrade TGCS: Longitudinal study of daily variation of rats' behavior in the elevated plus-maze. Physiology & behavior 2003, 78(1):125-133.
    連結:
  83. 90. Jones N, King SM: Influence of circadian phase and test illumination on pre-clinical models of anxiety. Physiol Behav 2001, 72(1-2):99-106.
    連結:
  84. 91. von Bülow V, Rink L, Haase H: Zinc-mediated inhibition of cyclic nucleotide phosphodiesterase activity and expression suppresses TNF-α and IL-1β production in monocytes by elevation of guanosine 3′, 5′-cyclic monophosphate. The Journal of Immunology 2005, 175(7):4697-4705.
    連結:
  85. 92. Bao B, Prasad AS, Beck FW, Fitzgerald JT, Snell D, Bao GW, Singh T, Cardozo LJ: Zinc decreases C-reactive protein, lipid peroxidation, and inflammatory cytokines in elderly subjects: a potential implication of zinc as an atheroprotective agent. Am J Clin Nutr 2010, 91(6):1634-1641.
    連結:
  86. 93. Huang TL, O'Banion MK: Interleukin-1 beta and tumor necrosis factor-alpha suppress dexamethasone induction of glutamine synthetase in primary mouse astrocytes. J Neurochem 1998, 71(4):1436-1442.
    連結:
  87. 94. Reyes TM, Fabry Z, Coe CL: Brain endothelial cell production of a neuroprotective cytokine, interleukin-6, in response to noxious stimuli. Brain Res 1999, 851(1-2):215-220.
    連結:
  88. 96. Buttini M, Boddeke H: Peripheral lipopolysaccharide stimulation induces interleukin-1 beta messenger RNA in rat brain microglial cells. Neuroscience 1995, 65(2):523-530.
    連結:
  89. 97. Van Dam AM, Bauer J, Tilders FJ, Berkenbosch F: Endotoxin-induced appearance of immunoreactive interleukin-1 beta in ramified microglia in rat brain: a light and electron microscopic study. Neuroscience 1995, 65(3):815-826.
    連結:
  90. 98. Mitchell K, Yang HY, Berk JD, Tran JH, Iadarola MJ: Monocyte chemoattractant protein-1 in the choroid plexus: a potential link between vascular pro-inflammatory mediators and the CNS during peripheral tissue inflammation. Neuroscience 2009, 158(2):885-895.
    連結:
  91. 99. Wong ML, Bongiorno PB, Gold PW, Licinio J: Localization of interleukin-1 beta converting enzyme mRNA in rat brain vasculature: evidence that the genes encoding the interleukin-1 system are constitutively expressed in brain blood vessels. Pathophysiological implications. Neuroimmunomodulation 1995, 2(3):141-148.
    連結:
  92. 100. Giulian D, Ingeman JE: Colony-stimulating factors as promoters of ameboid microglia. J Neurosci 1988, 8(12):4707-4717.
    連結:
  93. 101. Giulian D, Woodward J, Young DG, Krebs JF, Lachman LB: Interleukin-1 injected into mammalian brain stimulates astrogliosis and neovascularization. J Neurosci 1988, 8(7):2485-2490.
    連結:
  94. 102. Lieberman AP, Pitha PM, Shin HS, Shin ML: Production of tumor necrosis factor and other cytokines by astrocytes stimulated with lipopolysaccharide or a neurotropic virus. Proc Natl Acad Sci U S A 1989, 86(16):6348-6352.
    連結:
  95. 103. Manzerra P, Behrens MM, Canzoniero LM, Wang XQ, Heidinger V, Ichinose T, Yu SP, Choi DW: Zinc induces a Src family kinase-mediated up-regulation of NMDA receptor activity and excitotoxicity. Proc Natl Acad Sci U S A 2001, 98(20):11055-11061.
    連結:
  96. 104. Frazzini V, Rockabrand E, Mocchegiani E, Sensi S: Oxidative stress and brain aging: is zinc the link? Biogerontology 2006, 7(5-6):307-314.
    連結:
  97. 105. Sheline CT, Cai AL, Zhu J, Shi C: Serum or target deprivation-induced neuronal death causes oxidative neuronal accumulation of Zn2+ and loss of NAD+. Eur J Neurosci 2010, 32(6):894-904.
    連結:
  98. 106. Martinez-Galan JR, Diaz C, Juiz JM: Histochemical localization of neurons with zinc-permeable AMPA/kainate channels in rat brain slices. Brain Res 2003, 963(1-2):156-164.
    連結:
  99. 107. Mocchegiani E, Bertoni-Freddari C, Marcellini F, Malavolta M: Brain, aging and neurodegeneration: role of zinc ion availability. Prog Neurobiol 2005, 75(6):367-390.
    連結:
  100. 108. Kauppinen TM, Higashi Y, Suh SW, Escartin C, Nagasawa K, Swanson RA: Zinc triggers microglial activation. J Neurosci 2008, 28(22):5827-5835.
    連結:
  101. 109. Mattson MP, Camandola S: NF-κB in neuronal plasticity and neurodegenerative disorders. The Journal of clinical investigation 2001, 107(3):247-254.
    連結:
  102. 110. O'Neill LA, Kaltschmidt C: NF-kB: a crucial transcription factor for glial and neuronal cell function. Trends in neurosciences 1997, 20(6):252-258.
    連結:
  103. 111. Takeda A, Minami A, Takefuta S, Tochigi M, Oku N: Zinc homeostasis in the brain of adult rats fed zinc-deficient diet. J Neurosci Res 2001, 63(5):447-452.
    連結:
  104. 112. Shrivastava R, Raza S, Yadav A, Kushwaha P, Flora SJ: Effects of sub-acute exposure to TiO2, ZnO and Al2O3 nanoparticles on oxidative stress and histological changes in mouse liver and brain. Drug Chem Toxicol 2014, 37(3):336-347.
    連結:
  105. 113. Stadtman ER, Berlett BS: Reactive Oxygen-Mediated Protein Oxidation in Aging and Disease. Chemical Research in Toxicology 1997, 10(5):485-494.
    連結:
  106. 115. de Oliveira MR, Silvestrin RB, Mello e Souza T, Moreira JCF: Oxidative stress in the hippocampus, anxiety-like behavior and decreased locomotory and exploratory activity of adult rats: Effects of sub acute vitamin A supplementation at therapeutic doses. NeuroToxicology 2007, 28(6):1191-1199.
    連結:
  107. 116. Valdiglesias V, Costa C, Kilic G, Costa S, Pasaro E, Laffon B, Teixeira JP: Neuronal cytotoxicity and genotoxicity induced by zinc oxide nanoparticles. Environ Int 2013, 55:92-100.
    連結:
  108. 4. Elder A, Oberdorster G: Translocation and effects of ultrafine particles outside of the lung. Clin Occup Environ Med 2006, 5:785-796.
  109. 53. Kauppinen TM, Higashi Y, Suh SW, Escartin C, Nagasawa K, Swanson RA: Zinc triggers microglial activation. The Journal of neuroscience : the official journal of the Society for Neuroscience 2008, 28(22):5827-5835.
  110. 60. Poulsen HE, Prieme H, Loft S: Role of oxidative DNA damage in cancer initiation and promotion. European Journal of Cancer Prevention 1998, 7(1):9-16.
  111. 64. Toyokuni S, Tanaka T, Hattori Y, Nishiyama Y, Yoshida A, Uchida K, Hiai H, Ochi H, Osawa T: Quantitative immunohistochemical determination of 8-hydroxy-2'-deoxyguanosine by a monoclonal antibody N45.1: its application to ferric nitrilotriacetate-induced renal carcinogenesis model. Lab Invest 1997, 76(3):365-374.
  112. 66. Xie H, Mason MM, Wise JP: Genotoxicity of metal nanoparticles. Reviews on environmental health 2011, 26(4):251-268.
  113. 76. Juan H-T: Lung toxicity with zinc oxide nanoparticles: study of zinc ion. Institute of occupational medicine and industrial hygiene(Unpublished master's thesis) 2011, National Taiwan University.
  114. 80. Rajaraman GO: Oxidative stress: Role in genomic damage and disease. Universitätsbibliothek der Universität Würzburg; 2011.
  115. 95. Sebire G, Emilie D, Wallon C, Hery C, Devergne O, Delfraissy JF, Galanaud P, Tardieu M: In vitro production of IL-6, IL-1 beta, and tumor necrosis factor-alpha by human embryonic microglial and neural cells. J Immunol 1993, 150(4):1517-1523.
  116. 114. Sohal RS, Mockett RJ, Orr WC: Mechanisms of aging: an appraisal of the oxidative stress hypothesis1,2. Free Radical Biology and Medicine 2002, 33(5):575-586.