Title

低矮型鋼板混凝土複合牆之耐震性能試驗與分析

Translated Titles

An Experimental Study of the In-Plane Cyclic Behavior of Low-Aspect-Ratio Steel-Plate Composite

DOI

10.6342/NTU.2015.01367

Authors

陳柏安

Key Words

鋼板混凝土複合牆 ; 擬靜態反覆載重試驗 ; 細長比 ; 斷面鋼材比 ; 簡化側推模型 ; MIKP反覆載重模型 ; Steel-plate-concrete composite wall(SC wall) ; In-plane cyclic loading ; Slenderness ratio ; Reinforcement ratio ; Simplified pushover parameter model ; Modified IKP model

PublicationName

臺灣大學土木工程學研究所學位論文

Volume or Term/Year and Month of Publication

2015年

Academic Degree Category

碩士

Advisor

黃尹男

Content Language

繁體中文

Chinese Abstract

鋼板混凝土複合牆為一種以兩片鋼板內填充混凝土而成的複合材料式結構元件,鋼板與填充混凝土之間以剪力釘和螺桿兩種連接器傳遞剪力,常配置於核能電廠中作為抗垂直力及側向力系統。本研究探討鋼板混凝土複合牆之耐震性能,以實驗與理論模型分析鋼板混凝土複合牆受反覆側向載重作用下之行為。 本研究於國家地震研究中心完成四面大尺寸的鋼板混凝土複合牆的擬靜態反覆載重試驗,試體設計變數為牆厚、斷面鋼材比(定義為鋼板面積與斷面積的比例)和細長比(鋼板厚度與剪力連接器間距的比例),四座試體的高寬比控制為0.5,皆澆製於獨立基座。四面試體經分析屬於撓曲控制,於實驗中破壞演進順序相似,即混凝土的開裂、鋼面板降伏、鋼面板挫屈、混凝土角隅碎裂。試驗所測試的兩種鋼板細長比不影響試體之強度,但對遲滯迴圈之束縮現象有明顯影響。 本研究以實驗結果驗證由Epackachi博士等人於2014年提出的簡化側推模型及修正IKP反覆載重模型,並檢核鋼板混凝土複合牆設計規範AISC N690提出的連接器間距(決定鋼板細長比之重要參數)是否影響鋼板複合牆整體行為。

Topic Category 工學院 > 土木工程學研究所
工程學 > 土木與建築工程
Reference
  1. [1] American Concrete Institute 349 (ACI 349) (2006), “Code Requirements for Nuclear Safety-Related Concrete Structures and Commentary.” Farmington Hills, MI.
    連結:
  2. [6] Ibarra, L. F., Medina, R. A., and Krawinkler, H. (2005). "Hysteretic models that incorporate strength and stiffness deterioration." Earthquake Engineering and Structural Dynamics, 34(12),1489-1511.
    連結:
  3. [8] Nie, J. G., Ma, X. W., Tao, M. X., Fan, J. S., and Bu, F. M. (2013). "Effective stiffness of composite shear wall with double plates and filled concrete." Journal of Constructional Steel Research, 99, 140-148.
    連結:
  4. [11] Ozaki, M., Akita, S., Osuga, H., Nakayama, T., and Adachi, N. (2004). "Study on steel plate reinforced concrete panels subjected to cyclic in-plane shear," Nuclear Engineering and Design, 228(1-3),225–244.
    連結:
  5. [12] Park, R., Priestley, M. J. N., and Gill, W. D. (1982). "Ductility of square-confined concrete columns." 108 (ST4), 929-950.
    連結:
  6. [13] Park, R. (1988). "Ductility evaluation from laboratory and analytical testing." Ninth World Conference on Earthquake Engineering, Tokyo-Kyoto, Japan.
    連結:
  7. [14] Tokyo Electric Power Company (TEPCO) presentation (2002) “Improved Construction and Project Management,”
    連結:
  8. [15] Tokyo Electric Power Company (TEPCO) (2002) “Development of Advanced Concept for Shortening Construction Period of ABWR Plant,” ICONE10-22491, April 14-18, 2002.
    連結:
  9. [17] Varma, A. H., Malushte, S. R., Sener, K., Lai, Z. (2011a). "Steel-plate composite (SC) 129 walls for safety related nuclear facilities: design for in-plane and out-of-plane demands," Proceedings of the 21st IASMiRT Conference (SMiRT 21), New Delhi, India, Paper ID #760.
    連結:
  10. [18] Varma, A.H., Zhang, K., Chi, H., Booth, P. and Baker, T. (2011b). "In-plane shear behavior of SC composite walls: theory vs. experiment," Proceedings of the 21st IASMiRT Conference (SMiRT 21), New Delhi, India, Paper ID #764.
    連結:
  11. [19] Varma, A. H., Malushte, S. R., Sener, K. C., and Booth, P. N. (2012a). "Analysis recommendations for steel-composite (SC) walls of safety-related nuclear facilities," Structures Congress, ASCE, 1871–1880.
    連結:
  12. [20] Varma, A.H., Zhang, K., Malushte, S.R., Gallocher, S. (2012b). “Effect of Shear Connectors on Local Buckling and Composite Action in Steel Concrete Composite Walls”, submitted to Journal of Nuclear Engineering and Design, Nov, 2012.
    連結:
  13. [2] American Institute of Steel Construction (AISC) (2010). “Specification for Design of Steel-Plate Composite (SC) Walls in Safety-Related Structures for Nuclear Facilities” AISC Proposal APPENDIX N9, Chicago, IL.
  14. [3] Epackachi, S., Nguyen, N. H., Kurt, E. G., Whittaker, A. S., and Varma, A.H. (2013) “An experimental study of the in-plane shear response of steel concrete composite walls.” Trans. ofthe Internal Assoc. for Struct. Mech. in Reactor Tech.Conf.,, SMiRT -22, San Francisco, USA.
  15. [4] Epackachi, Siamak. (2015). “Numerical and experimental studies on steel-concrete compositewalls,” Ph.D. Dissertation in preparation, Department of Civil, Structural and Environmental Engineering,University at Buffalo.
  16. [5] Fukumoto, T., Kato, B., and Sato, K. (1987). "Concrete filled steel bearing walls." IABSESymposium, Paris-Versailles.
  17. [7] Jian-Guo, N., Hong-Song, H., Jian-Sheng, F., Mu-Xuan, T., Sheng-Yong, L., and Fu-Jun, L.(2013). "Experimental study on seismic behavior of high-strength
  18. [9] Ozaki, M., Akita, S., Takeuchi, M., Oosuga, H., Nakayama, T., and Niwa, H., (2000). "Experimental Study on Steel-plate-reinforced Concrete Structure Part 41: Heating Tests (Outline of Experimental Program and Results), Annual Conference of Architectural Institute of Japan, 2000, Part 41-43, pp. 1127-1132.”
  19. [10] Ozaki, M., Akita, S., Niwa, N., Matsuo, I., and Usami, S. (2001). "Study on steel-plate reinforced concrete bearing wall for nuclear power plants part 1: shear and bending loading tests of SC walls." 16th International Conference on Structural Mechanics in Reactor Technology (SMiRT16), International Association for Structural Mechanics in Reactor Technology (IASMiRT), Washington DC, USA.
  20. [16] Varma, A.H., Malushte, S.R., Sener, K.C., and Booth, P.N. (2009). “Analysis and Design of Modular Composite Walls for Combined Thermal and Mechanical Loading.” Trans. of the Internal Assoc. for Struct. Mech. In Reactor Tech. Conf., SMiRT- 20, Div. TS 6 Paper 1820, Espoo, Finland, Aug. 9-14.
Times Cited
  1. 鄭與錚(2016)。有邊界構材之鋼板混凝土複合牆之耐震行為與試驗研究。臺灣大學土木工程學研究所學位論文。2016。1-144。 
  2. 何其安(2016)。有邊界構材之鋼板混凝土複合牆 之耐震行為與分析研究。臺灣大學土木工程學研究所學位論文。2016。1-136。 
  3. 曾皓鼎(2016)。鋼板與混凝土複合剪力牆之耐震性能研究。交通大學土木工程系所學位論文。2016。1-184。