Title

無人機航拍之空中三角測量精度與控制配置探討

Translated Titles

A Study of Aerial Triangulation and Ground control point Arrangement in UAS photogrammetry

DOI

10.6342/NTU.2015.02071

Authors

陳昱芸

Key Words

無人飛行載具系統 ; 地面控制點 ; 空中三角測量 ; Unmanned Aerial Vehicle System (UAS) ; Ground Control Point ; Aerotriangulation

PublicationName

臺灣大學土木工程學研究所學位論文

Volume or Term/Year and Month of Publication

2015年

Academic Degree Category

碩士

Advisor

徐百輝

Content Language

繁體中文

Chinese Abstract

基於無人機航拍技術的蓬勃發展,目前市面上已有許多特別針對UAS影像進行後續解算處理並產製相關應用產品(正射影像、DEM/DSM、等高線、密點雲模型)的商業軟體,是以空三方位解算成果的精度深刻影響著後端產品的精度。國內在傳統航測作業上對於控制點之佈設位置與數量已有明確的規範加以訂定(如:內政部基本圖測製規範),但針對UAS作業卻無相關規範可供遵循,且各商業軟體中也幾乎未對控制點的需求有詳細說明。 本研究試圖以實際資料驗證控制點佈設密度對成果解算精度之影響,並考量不同商業軟體之解算模式對控制點的需求及敏感程度可能會有所差異,茲以目前市面上基於攝影測量或電腦視覺不同解算模式原理之商業軟體(基於作業資源考量,選定EnsoMOSAIC、ORIMA、Pix4D、APS)進行實驗及分析,期能在實務作業上提供最佳的控制配置方案。相關結論與建議乃基於本次實驗之成果。

English Abstract

Benefited from the newly developed UAS photogrammetry technology, commercial softwares converting images into photogrammetry productions such as orthophotos, DEM/DSM, contour lines, dense matching models are available. The quality of photogrammetric productions is directly related to the results of the aerotriangulation adjustment of UAS photogrammetry. Regulations about arrangement of ground control points (GCPs) in traditional photogrammetry are announced by National Land Surveying and Mapping Center, Ministry of the Interior (NLSC) for years. With regard to UAS, none of related regulations allows users to follow. In this paper, influence of different arrangement in GCPs with different commercial softwares are presented. All the execution models of the softwares are based on bundle adjustment with self-calibration or/and computer vision. The experiment results show the most appropriate methodology of different commercial software. Finally, conclusions and suggestions are illustrated based on the experiment results.

Topic Category 工學院 > 土木工程學研究所
工程學 > 土木與建築工程
Reference
  1. 邱依屏,2009。航測網形分析模擬器,國立臺灣大學土木工程學系研究所碩士論文:台北。
    連結:
  2. 鄭傑文,2007。攝影幾何於攝影測量之應用,國立臺灣大學土木工程學系研究所碩士論文:台北。
    連結:
  3. 劉虹妤,2000。數位相機率定之自動化,國立成功大學測量工程學系碩士論文:台南。
    連結:
  4. 謝幸宜,2010。以自率光束法提升四旋翼UAV 航拍影像之定位精度,國立政治大學地政學系碩士論文:台北
    連結:
  5. A. Heyden and K. Aastrom, 1996. Euclidean Reconstruction from Constant Intrinsic Parameters, Proc. ICPR, pp. 339-343.
    連結:
  6. C.V. Stewart, 1995. MINPRAN: a new robust estimator from computer vision, IEEE Transactions on Pattern Analysis and Machine Intelligence 17 (10) ,pp.925–938.
    連結:
  7. E.L. Hall, J.B.K. Tio, C.A. McPherson, F.A. Sadjadi, 1982. Measuring curved surfaces for robot vision, Computer Journal 15 (12) ,pp.42–54.
    連結:
  8. F. Li, M. Brady, C. Wiles, 1996. Fast Computation to the Fundamental Matrix for Active Stereo Vision System, Fourth European Conference on Computer Vision, vol. 1, Cambridge, UK, pp. 157–166.
    連結:
  9. H.C. Longuet-Higgins, 1981. A computer algorithm for reconstructing a scene from two projections, Nature 293 ,pp.133–135.
    連結:
  10. Hartley, R.; Mundy, J , 1993. The relationship between photogrammetry and computer vision. Proc. SPIE, 14, pp.92–105.
    連結:
  11. J. Weng, P. Cohen, M. Herniou, 1992. Camera calibration with distortion models and accuracy evaluation, IEEE Transactions on Pattern Analysis and Machine Intelligence 14 (10) ,pp.965–980.
    連結:
  12. J.-H. Jang, H. Ki-Sang, 1996. Self-Calibration of a Stereo-Camera by Pure Translational Motion, IEEE International Conference on Image Processing, vol. 2, Laussane, Switzerland, pp. 297–300.
    連結:
  13. Luong, Q.T., & O.D. Faugeras, 2004. The Fundamental matrix: theory, algorithms, and stability analysis, I.N.R.I.A., 2004 route des Lucioles, B.P. 93.
    連結:
  14. M. Bober, N. Greorgis, J. Kittler,1998. On accurate and robust estimation of fundamental matrix, Computer Vision and Image Understanding 72 (1) ,pp39–53.
    連結:
  15. M. Ito, 1991. Robot vision modelling—camera modelling and camera calibration, Advanced Robotics 5 (3),pp. 321–335.
    連結:
  16. M. Pollefeys and L. Van Gool, 1998. Self-Calibration and Metric Reconstruction in Spite of Varying and Unknown Internal Camera Parameters,Proc. ICCV, pp.90-95.
    連結:
  17. McGlone, J. C., 2004. Manual of Photogrammetry, 5th Edition, American Society for Photogrammetry and Remote Sensing, Maryland.
    連結:
  18. O.D. Faugeras, G. Toscani, 1986. The Calibration Problem for Stereo,Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Los Alamitos, CA, pp.15–20.
    連結:
  19. O. D. Faugeras, O.-T. Luong and S. J. Maybank, 1992. Camera Self-Calibration: Theory and Experiments, Proc. ECCV, pp. 321-334,
    連結:
  20. O.D. Faugeras,1995. Stratification of 3D Vision: Projective, Affine, and Metric Representation, J. Optical Society of America, vol. 12, no. 3, pp. 465-484.
    連結:
  21. P.H.S. Torr, A. Zisserman, 2000. MLESAC: a new robust estimator with application to estimating image geometry, Computer Vision and Image Understanding 78,pp.138–156.
    連結:
  22. P.I.J. Batlle, E. Mouaddib, J. Salvi, 1998. A survey: recent progress in coded structured light as a technique to solve the correspondence problem, International Journal of Pattern Recognition 31 (7) ,pp.963–982.
    連結:
  23. P.J. Rousseeuw, A.M. Leroy, 1987. Robust Regression and Outlier Detection, Wiley, New York.
    連結:
  24. R. Deriche, Z. Zhang, Q.-T. Luong, O. Faugeras, 1994. Robust recovery of the epipolar geometry for an uncalibrated stereo ring, European Conference on Computer Vision 800,pp.567–576.
    連結:
  25. R. Hartley, R. Gupta, T. Chang, 1992. Stereo from uncalibrated cameras,Computer Vision and Pattern Recognition ,pp.761–764.
    連結:
  26. R. I. Hartley, 1994. Self-Calibration from Multiple Views with a Rotating Camera, Proc. ECCV, pp. 471-478.
    連結:
  27. R.I. Hartley, 1992. Estimation of relative camera position for uncalibrated cameras, European Conference on Computer Vision,pp .579–587.
    連結:
  28. R.Y. Tsai, 1987. A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses, IEEE International Journal on Robotics and Automation RA-3 (4) ,pp.323–344.
    連結:
  29. T.S. Huang, O.D. Faugeras, 1989. Some proprieties of the E matrix in twoview motion estimation, IEEE Transactions on Pattern Analysis and Machine Intelligence 11 (12),pp.1310–1312.
    連結:
  30. Xavier Armangue’& Joaquim Salvi, 2003.Overall view regarding fundamental matrix estimation, Image and Vision Computing 21 (2003) ,pp. 205–220.
    連結:
  31. Z. Zhang, Q.-T. Luong, O. Faugcras, 1996. Motion of an uncalibrated stereo ring: self-calibration and metric reconstruction, IEEE Transactions on Robotics and Automation 12 (1) ,pp.103–113.
    連結:
  32. 內政部,2006。基本圖測製規範。
  33. 李德仁、袁修孝,2002。誤差處理與可靠性理論,武漢大學出版社:武漢。
  34. Brown, D. C., 1976. The bundle adjustment – progress and prospect, International Archives of Photogrammetric and Remote Sensing, vol. XIII, No. 3, ISPRS, Helsinki.
  35. L. Quan and B. Triggs, 2000. A Unification of Auto-Calibration Methods,Proc. ACCV, pp. 917-922.
  36. M. Armstrong, A. Zisserman, and R. Hartley, 1996. Self-Calibration from Image Triplets, Proc. ECCV, pp. 3-16.
  37. M.J. Brooks, L. Agapito, D.Q. Huynh, L. Baumela, 1996. Direct Methods for Self-Calibration of a Moving Stereo Head, Fourth European Conference on Computer Vision, vol. 2, Cambridge, UK, pp.415–426.
  38. Mikhail, E. M., Bethel, J. S., and McGlone J. C., 2001. Introduction to Modern Photogrammetry, Washington: John Wiley & Sons, Inc.
  39. O.D. Faugeras, 1993. Three-Dimensional Computer Vision, The MIT Press,Cambridge, MA,
  40. P.H.S. Torr, D.W. Murray, 1997. The development and comparison of robust methods for estimating the fundamental matrix, International Journal of Computer Vision 24 (3),pp. 271–300.
  41. R. I. Hartley, 1994. Euculidean Reconstruction from Multiple Views,Applications of Invariance in Computer Vision, LMCS 825, Springer-Verlag, pp. 237-256.
  42. R.I. Hartley, 1993. Euclidean reconstruction from uncalibrated views,Second European Workshop on Applications of Invariance in Computer Vision ,pp.237–257.
  43. Remondino, F., and Fraser, C., 2006, Digital Camera Calibration Methods: Considerations and Comparisons, ISPRS Commission V Symposium 'Image Engineering and Vision Metrology', pp.266-272, 25-27 September, Dresden, Germany.
  44. Z. Zhang, 1998. Determining the epipolar geometry and its uncertainty: a review, International Journal of Computer Vision 27 (2) ,pp .161–198.