Translated Titles

Dynamic Test of Model Slope Using Small Shaker





Key Words

模型邊坡 ; 振動台 ; 動態行為 ; 相似律 ; 反應分析 ; model slope ; shaking table ; dynamic behavior ; law of similarity ; response analysis



Volume or Term/Year and Month of Publication


Academic Degree Category




Content Language


Chinese Abstract

一九九九年九月二十一日,集集大地震襲擊中台灣,造成人員傷亡、房屋倒塌,許多邊坡嚴重破壞,為更深入了解邊坡之破壞機制,林美聆與王國隆自二○○三年起於國家地震中心進行「大型模型邊坡之振動台試驗」,探索邊坡之動態行為。但礙於大型試驗試體準備時間較長及經費耗費甚鉅,為能於大型試驗進行前預先模擬,因此王國隆開發小型振動台,期利用小型土壤模型振動試驗,進行先期定性研究以降低大型試驗之風險,產生互補作用。 本研究以越南峴港砂為試驗材料,透過剪力波元件試驗與共振柱試驗獲得試驗土壤之動態特性,包括剪力波速、最大剪力模數及剪力模數和阻尼比對剪應變之關係曲線。利用小型振動台進行模型邊坡動態試驗,模擬邊坡受震情形,藉由加速度計記錄與影像判視,觀察其受震行為。最後採用FLAC程式分析並驗證模型邊坡試驗之結果,配合STABL程式與Meymand(1998)之模型相律關係,比較模型與原型間之差異。 試驗結果發現振動台之振動模式,可產生頻率7赫茲,加速度振幅0.2g之簡諧振動,使模型邊坡產生近似圓弧型之淺層滑動破壞。而相對密度較低(約40%)之模型邊坡試體,其坡面滑動破壞較相對密度較高者(約70%)發生時機早,主要滑動發生之延時短暫,滑動量大,坡面滑動速率高,試驗前後模型邊坡幾何形狀改變大。而當試體相對密度上升,模型箱邊界對試體之束制情形會愈加明顯,此時應妥善處理邊界以免影響試驗結果。 以FLAC程式模擬小型振動台模型邊坡試驗,可有效模擬分析試驗結果。以STABL程式進行擬靜態分析其臨界加速度大小,與試驗中是否發生破壞之趨勢一致。Meymand之模型相似律,確實可使剪應變量達到一定程度之相似,然而試體之剪力波速與剪力模數難以滿足相似律之要求,係導致誤差之主要原因之一。

English Abstract

The Chi-Chi earthquake struck the central Taiwan on September 21, 1999 and resulted in severe landslide hazard. In order to understand the dynamic slope behavior, Meei-Ling Lin and Kuo-Lung Wang(2005) conducted “large- scale model slope shaking table test” in National Center for Research on Earthquake Engineering since 2003. However, the large scale test is time consuming and difficult to prepare simple. Therefore, the small shaking table was developed to simulate the large scale test and to perform qualitatively preliminary researches to lower the risk of large scale test. The small shaking table test is supplementary test to the large scale test. The Vietnam sand was used in this research, its dynamic characters, including shear wave velocity, maximum shear modulus, and the relationships of shear modulus and damping ratio versus shear strain were determined. Model slope test using small shaker were executed to simulate and observe the dynamic behavior of slope. Finally, the test results were verified and compared with results of prototype using FLAC, STABL, and similitude law proposed by Meymand(1998). The result indicates that the small shaker which generated simple harmonic vibration with frequency 7Hz and acceleration amplitude of 0.2g induced circular shallow failure of model slope. The slope failure of model slope with lower relative density, about 40%, than the model slope with higher relative density, and with about 70%, occurred earlier, within shorter duration, larger slip volume and faster slipping rate, and resulting more change in shape. The constraint of model box boundaries becomes more significant while samples’ relative density increased. The FLAC program used in this study appeared to be able to effectively analyze small-scale model slope. The critical acceleration computed using STABL in the pseudo-static is consistent with the model slope failure condition. The similitude law by Meymand appeared to satisfy the similarity between model and prototype in shear strain, however, due to the limitation in scaling of shear wave velocity and shear modulus, error was introduced.

Topic Category 工學院 > 土木工程學研究所
工程學 > 土木與建築工程
  1. [1] Ambraseys, N.N. and Menu, J.M., (1988). ‘‘Earthquake-induced Ground Displacements,’’ Earthquake Engineering and Structural Dynamics, Vol.16, No.7, pp.985-1006.
  2. [3] Das, (1995). Principles of Foundation Engineering, 3rd ed., PWS.
  3. [10] Iai, S., (1989). “Similitude for Shaking Table Tests on Soil-Structure-Fluid Model in 1g Gravitational Field,” Soils and Foundations, JSSMFE, Vol.29, No.1, pp.105-118.
  4. [12] Kagawa, T. (1978). “On the Similitude in Model Vibration Tests of Earth Structures,” Proceedings of Japan Society of Civil Engineering, No.275, pp.69-77. (in Japanese).
  5. [13] Kana, D., Boyce, L. and Blaney, G., (1986). “Development of a Scale Model for the Dynamic Interaction of a Pile in Clay,” J. of Energy Resources Technology, ASME, Vol.108, No.3, pp.254-261.
  6. [14] Keefer, D.K., (1984). “Landslides Caused by Earthquakes,” Geol. Soc. Am. Bull., Vol.95, pp.406-421.
  7. [16] Kramer, S.L., and Matthew, W.S., (1997). ‘‘Modified Newmark Model for Seismic Displacement of Compliant Slopes,’’ Journal of Geotechnical and Geoenvironmental Engineering, Vol.123, No.7, pp.635-644.
  8. [18] Lin, M. L. and Wang, K. L., (2005). “Seismic Slope Behavior in a Large-Scale Shaking Table Model Test,” Engineering Geology.
  9. [21] Newmark, N.M., (1965). “Effects of Earthquake on Dams and Embankments,” Géotechnique, Vol.15, No.2, pp.139-160.
  10. [22] Roscoe, K., (1968). “Soils and Model Tests,” J. of Strain Analysis, Vol.3, No.1, pp.57-64.
  11. [23] Sarma, S.K., (1975). ‘‘Seismic Stability of Earth Dams and Embankments,’’ Geotechnique, Vol.25, No.4, pp.743-761.
  12. [26] Okamoto, S. (1980). Introduction to Earthquake Engineering.
  13. [28] Uwabe, T., Sosuke, K., and Norihiro, H., (1986). “Shaking Table Tests and Circular Arc Analysis for Large Models of Embankments on Saturated Sand Layers,” Soils and Foundation, Vol.26, No.4, pp.1-15.
  14. [30] Viggiani, G. and Atkinson, J. H., (1995). “Interpretation of Bender Element Tests,” Geotechnique, Vol.45, No.1, pp.149-154.
  15. [32] Wartman, J., Seed, R.B. and Bray, J.D., (2005). “Shaking Table Modeling of Seismically Induced Deformations in Slopes,” Journal of Geotechnical and Geoenvironmental Engineering, Vol.131, No.5, pp.610-622.
  16. [39] 高贈智(2004),『集集地震引致台灣中部山區邊坡臨界滑移量之分析』,國立台灣大學土木工程研究所碩士論文。
  17. [2] Clough, R. and Pirtz, D., (1956). “Earthquake Resistance of Rock fill Dams,” J. Soil Mechanics and Foundation Div, ASCE, Vol.82, No.2, pp.1-26.
  18. [4] Dyvik, R. and Madshus, C., (1985). “Lab Measurements of Gmax Using Bender Elements,” Advance in the Engineering, Vol.161, pp.117-137.
  19. [5] Fang, Y.S., Chen, T.J., Holtz, R.D. and Lee, W.F., (2004). “Reduction of Boundary Friction in Model Tests,” Geotechnical Testing Journal, Vol.27, No.1.
  20. [6] FLAC V4.0 user manual (2000).
  21. [7] Gibson, A., (1996). “Physical Scale Modeling of Geotechnical Structures at One-G,” Ph. D. Dissertation, California Inst. of Tech, Pasadena.
  22. [8] Gohl, W., (1991). “Response of Pile Foundations to Simulated Earthquake Loading: Experimental and Analytical Results,” Ph.D. Dissertation, Univ. of British Columbia.
  23. [9] Hardin, B.O. and Drnevich, V.P., (1972). “Shear Modulus and Damping in Soils; Design Equations and Curves,” Journal of Soil Mechanics and Foundation Engineering Division, ASCE, Vol.98, No.SM7, pp.667-692.
  24. [11] Jibson, R.W., (1985). “Landslides Caused by the 1811-12New Madrid Earthquakes,” Ph.D. Thesis, California, Stanford University.
  25. [15] Keefer, K.K. and Wilson, R.C., (1989). “Predicting Earthquake- induced Landslides with Emphasis on Arid and Semi-arid Environments, in Sadler, P. M., and Morton, DD. M., eds., Landslides in a Semi-arid Environment,” California, Iland Geologcial Society, Vol.2, pp.118-149.
  26. [17] Langhaar, H., (1951). Dimensional Analysis and Theory of Models, John Wiley and Sons, New York.
  27. [19] Meymand, P.J., (1998). “Shaking Table Scale Model Tests of Nonlinear Soil-Pile-Superstructure Interaction in Soft Clay, Ph.D. dissertation, U.C. Berkeley.
  28. [20] Moncarz, P. and Krawinkler, H., (1981). “Theory and Application of Experimental Model Analysis in Earthquake Engineering,” Rpt. No.50, John Blume Earthquake Eng. Ctr., Stanford Univ.
  29. [24] Scott, R., (1989). “Centrifuge and Modeling Technology: A Survey,” Rev. Franc. Geotech, No.48, pp.15-34.
  30. [25] Seed, H., and Clough, R., (1963). “Earthquake Resistance of Sloping Core Dams,” J. Soil Mechanics and Foundation Div, ASCE, Vol.89, No.1, pp.209-242.
  31. [27] Terzaghi, K., (1950). ‘‘Mechanisms of Landslides,’’ The Geological Survey of America, Engineering Geology (Berkley).
  32. [29] Varnes, D.J., (1978). “Slope Movement Types and Processes,” in Landslides: Analysis and Control, Transportation Research Board Special Report 176, National Academy of Sciences, Washington, D. C., pp.12-33.
  33. [31] Wartman, J., Riemer, M.F., Bray, J.D. and Seed, R.B., (2000). “Newmark analyses of a shaking table slope stability experiment,” Geotechnical earthquake engineering and soil dynamics Ⅲ pp.778-789.
  34. [33] Whitman, R.V. and Liao, S., (1985). ‘‘Seismic Design of Gravity Retaining Walls,’’ Proceeding, 8th WCEE, San Francisco, Vol.3, pp.533-540.
  35. [34] 王國隆(2004),『小型振動台試驗說明書』
  36. [35] 行政院農委會(1992),『水土保持手冊』,中華水土保持學會。
  37. [36] 邱建銘(2001),『以剪力波速評估員林地區液化及其地層動態反應研究』,國立台灣大學土木工程研究所碩士論文。
  38. [37] 卓彥百(1999),『層狀土壤對剪力波傳遞特性之影響評估』,國立台灣海洋大學河海工程學研究所碩士論文。
  39. [38] 胡耀華(1996),『剪力波元件試驗之初步研究』,國立台灣大學土木工程學系學士論文。
  40. [40] 張博翔(1999),『地表逕流與地下水湧升對土石流發生機制之關係研究』,國立台灣大學土木工程研究所碩士論文。
  41. [41] 陳建仁(2002),『土釘加勁邊坡之耐震硏究』,國立台灣大學土木工程研究所碩士論文。
  42. [42] 陳瑞禾(1996),『現代試驗評估黏土初始剪力模數之初步研究』,國立台灣大學土木工程研究所碩士論文。
  43. [43] 黃信元(1999),『部分飽和土壤坡地穩定動態數值分析』,國立台灣大學土木工程研究所碩士論文。
  44. [44] 黃香燕(1998),『利用壓電晶片量測不同應力條件下之砂土傳波速度』,國立中央大學土木工程學研究所碩士論文。
  45. [45] 黃筱卿(2002),『員林地區土壤液化之地盤反應分析』,國立台灣大學土木工程研究所碩士論文。
  46. [46] 劉育志(1996),『以重疊相關法分析剪力波元件試驗之探討』,國立台灣大學土木工程學系學士論文。
  47. [47] 蔡榮燦(1999),『砂土組構及傳波速度』,國立中央大學土木工程學研究所碩士論文。
Times Cited
  1. 王勝賢(2007)。地震誘發地滑之數值模擬。中興大學水土保持學系所學位論文。2007。1-157。 
  2. 曾美綺(2017)。地表地形對地震震波反應影響之數值模擬。臺灣大學土木工程學研究所學位論文。2017。1-136。 
  3. 陳俊甫(2015)。地形對地表放大效應之影響。臺灣大學土木工程學研究所學位論文。2015。1-121。 
  4. 藍詩婷(2014)。地形對地震震波反應之影響。臺灣大學土木工程學研究所學位論文。2014。1-162。 
  5. 黃靖雅(2013)。地震引致邊坡崩塌之影響範圍與滑動量數值模擬。臺灣大學土木工程學研究所學位論文。2013。1-130。 
  6. 蕭宇翔(2012)。振動台模型邊坡滑移行為之數值模擬。臺灣大學土木工程學研究所學位論文。2012。1-184。 
  7. 鄒銘徽(2011)。振動台模型相似律及滑移行為分析。臺灣大學土木工程學研究所學位論文。2011。1-119。 
  8. 陳彥澄(2010)。應用彈塑性模型模擬地震引致邊坡破壞之滑動量。臺灣大學土木工程學研究所學位論文。2010。1-99。 
  9. 陳永昇(2010)。小型振動台模擬邊坡滑動情形之研究。臺灣大學土木工程學研究所學位論文。2010。1-150。 
  10. 林彥志(2010)。利用數值模試模擬地震引致的邊坡滑動行為。臺灣大學土木工程學研究所學位論文。2010。1-147。 
  11. 許孝源(2010)。利用模型試驗模擬邊坡受震之研究。臺灣大學土木工程學研究所學位論文。2010。1-163。 
  12. 林京翰(2007)。利用小型振動台模擬邊坡受震情形之研究。臺灣大學土木工程學研究所學位論文。2007。1-144。 
  13. 鄭巽澤(2006)。小型振動台模擬邊坡受震行為之研究。臺灣大學土木工程學研究所學位論文。2006。1-143。 
  14. 林芷瑩(2006)。剪力強度折減法應用於地震邊坡之研究。成功大學資源工程學系學位論文。2006。1-96。
  15. 潘如蕙(2007)。剪力強度折減法應用於層狀土壤邊坡之穩定性研究。成功大學資源工程學系學位論文。2007。1-130。
  16. 李仕勤(2008)。應用塑性模式於邊坡滑動影響範圍之模擬。臺灣大學土木工程學研究所學位論文。2008。1-110。