Title

a-錫基自由基加成到羰基與亞胺系統的分子內自由基環化反應研究

Translated Titles

The Study of Intramolecular Free Radical Cyclizations of a-Stannanyl Radicals to Carbonyl and Imine System

DOI

10.6342/NTU.2004.01436

Authors

翁紹華

Key Words

a-錫基自由基 ; 羰基 ; 亞胺 ; 環化反應 ; Carbonyl ; a-Stannanyl Radicals ; Imine ; Cyclizations

PublicationName

臺灣大學化學研究所學位論文

Volume or Term/Year and Month of Publication

2004年

Academic Degree Category

博士

Advisor

蔡蘊明

Content Language

繁體中文

Chinese Abstract

a-錫基自由基加成到羰基進行分子內自由基環化反應,會經過一個有趣的 1,3-錫轉移機制。根據我們對於反應機制的研究, 1,3-錫轉移為一不可逆反應。另外我們在醛基 a 位加入雙甲基取代後,其競爭性環化反應會經由開環重排反應而得到環己基醛化合物 115 ,以及衍生物 120 、 121 。在反應系統中加入路易士酸時,在競爭性環化反應當中 a-錫基自由基加成到羰基的效率,由原本 a-錫基自由基加成到羰基與碳-碳雙鍵的比例為 0.70 增加為 1.22 。在 a-錫基自由基加成到醛基形成六員環的系統中,我們在醛基的 a 位上加入碸基來抑制 1,5-氫轉移並提升環合產物之產率,在這個系統中,我們得到了 41 % 的環合產物。根據氘化實驗,直接還原的產物中有一半是經由 1,5-氫轉移而來,而在w-錫基溴己醛的系統則全部經由 1,5-氫轉移而來。 有關 a-錫基自由基加成到亞胺系統,在腙與 oxime ether 的例子中,可以得到不錯的環合產率,但沒有看到 1,3-錫轉移的現象。在合成與純化亞胺 190 、 191 都面臨困難,而進行自由基環合反應之後也只得到雜亂的產物。 a-錫基黃酸酯與 a-錫基溴官能基在合成苯亞胺的系統中往往被破壞。

English Abstract

The mechanism of intramolecular free radical cyclizations of a-stannyl radicals to carbonyl involves an interesting 1,3-stannyl shift. According to our mechanistic study, 1,3-stannyl shift is an irreversible reaction. Competitive cyclization of a,a-dimethylaldehyde system undergoes ring opening rearrangement to give cyclohexylaldehyde 115 and related derivatives 120 、 121. After addition of Lewis acids in the reaction system, the efficiency of competitive cyclization of a-stannyl radical to carbonyl was improved. The ratio of a-stannyl radical addition to carbonyl and carbon-carbon double bond increased from 0.70 to 1.22. In the reaction of a-stannyl radical addition to carbonyl to form six-membered ring, we constructed a sulfonyl group at the a position of the formyl group to inhibit 1,5-H shift in order to increase the cyclization product yield. We obtained 41 % yield of the cyclization product in this system. According to the deuterium experiment, half of the straight reduction product of the a-sulfonylaldehyde was derived from a 1,5-H shift followed by hydrogen abstraction. In contrast, in the w-bromostannylhexanal system all the reduction product was obtained through a 1,5-H shift first. In the case of a-stannyl radical addition to imine system, the reaction of a-stannyl radical addition to hydrazone and oxime ether gave excellent cyclization yield. However, the phenomenon of 1,3-stannyl shift was not observed. There were difficulties in the synthesis and purification of imines 190 、 191, and we obtained massy products in the radical cyclization reactions. a-Stannylxanthate and a-stannylbromide functionalities were unstable under the reaction condition used for the synthesis of phenylimine.

Topic Category 基礎與應用科學 > 化學
理學院 > 化學研究所
Reference
  1. 7. (a) Hart, D. J.; Tsai, Y.-M. J. Am. Chem. Soc. 1982, 104, 1430. (b) Hart, D. J.; Choi, J.-K.; Tsai, Y.-M. Tetrahedron Lett. 1982, 23, 4765. (c) Hart, D. J.; Chuang, C.-P. J. Org. Chem. 1983, 48, 1784. (d) Hart, D. J.; Burnett, D. A.; Choi, J.-K.; Tsai, Y.-M. J. Am. Chem. Soc. 1984, 106, 8201. (e) Hart, D. J.; Choi, J.-K. Tetrahedron 1985, 41, 3959. (f) Hart, D. J.; Huang, H.-C. Tetrahedron. Lett. 1985, 26, 3749. (g) Hart, D. J.; Chuang, C.-P.; Gallucci, J. C. J. Org. Chem. 1988, 53, 3210. (h) Hart, D. J.; Seely, F. L. J. Am. Chem. Soc. 1988, 110, 1631.
    連結:
  2. 13. Fraser-Reid, B.; Walton, R. J. Am. Chem. Soc. 1991, 113, 5791.
    連結:
  3. 14. Batey, R. A.; MacKay, D. B. Tetrahedron Lett. 1998, 39, 7267.
    連結:
  4. 20. Mehta, G.; Srikrishna, A. Chem. Rev. 1997, 97, 671.
    連結:
  5. 21. Fallis, A. G.; Brinza, I. M. Tetrahedron 1997, 53, 17543.
    連結:
  6. 22. Corey, E. J.; Pyne, S. G. Tetrahedron Lett. 1983, 24, 2821.
    連結:
  7. 26. Ingold, K. U.; Griller, D.; Schmid, P. Can. J. Chem. 1979, 57, 831.
    連結:
  8. 27. Neumann, W. P. The Organic Chemistry of Tin; John Wiley & Sons Ltd.: New York, 1970.
    連結:
  9. 28. 范綱廷,國立台灣大學化學研究所碩士論文, 2000 。
    連結:
  10. 34. Narasimhan, S. Heterocycles 1982, 18, 131.
    連結:
  11. 35. Pearson, W. H.; Suga, H. J. Org. Chem. 1998, 63, 9910.
    連結:
  12. 46. Shing, T. K. M.; Zhong, Y.-L. J. Org. Chem. 1997, 62, 2622.
    連結:
  13. 52. Eliel, E. L.; Manoharan, M. J. Org. Chem. 1981, 46, 1959.
    連結:
  14. 1. (a) Gomberg, M. Chem. Ber. 1900, 33, 3150. (b) Gomberg, M. J. Am. Chem. Soc. 1900, 22, 757. (c) McBride, J. M.; Skinner, K. J.; Hochster, H. S. J. Am. Chem. Soc. 1974, 96, 4301. and references there in.
  15. 2. (a) Paneth, F.; Hofeditz, W. Ber. 1929, 62, 1335. (b) Paneth, F.; Lautsch, W. Nature, 1930, 125, 564. (c) Paneth, F. Trans. Frarday Soc. 1934, 30, 179. (d) Paneth, F.; Loleit, H. J. Chem. Soc. 1935, 366.
  16. 3. (a) Waters, W. A. J. Chem. Soc. 1937, 113. (b) Hey, D. H.; Waters, W. A. Nature 1937, 140, 934.
  17. 4. (a) Kharasch, M. S.; Potts, W. M. J. Org. Chem. 1937, 2, 195. (b) Kharasch, M. S.; Engelmann, H.; Mayo, F. R. J. Org. Chem. 1937, 2, 288. (c) Kharasch, M. S.; Norton, J. A.; Mayo, F. R. J. Org. Chem. 1938, 3, 48.
  18. 5. (a) Giese, B.; Meister, J. Chem. Ber. 1977, 110, 2588. (b) Giese, B.; Meixner, J. Tetrahedron Lett. 1977, 32, 2783. (c) Giese, B.; Zwick, W. Angew. Chem. Int. Ed. Engl. 1978, 17, 66.
  19. 6. (a) Stork, G.; Williard, P. G. J. Am. Chem. Soc. 1977, 99, 7067. (b) Stork, G.; Baine, N. H. J. Am. Chem. Soc. 1982, 104, 2321. (c) Stork, G.; Mook, R. J. Am. Chem. Soc. 1983, 105, 3720. (d) Stork, G.; Baine, N. H. Tetrahedron Lett. 1985, 48, 5927. (e) Stork, G.; Mook, R. Tetrahedron Lett. 1986, 38, 4529. (f) Stork, G.; Mook, R. J. Am. Chem. Soc. 1987, 109, 2829.
  20. 8. (a) Curran, D. P.; Rakiewicz, D. M. J. Am. Chem. Soc. 1985, 107, 1448. (b) Curran, D. P.; Chen, M.-H. Tetrahedron Lett. 1985, 26, 4991. (c) Curran, D. P.; Rakiewicz, D. M. Tetrahedon 1985, 41, 3943.
  21. 9. (a) Beckwith, A. L. J.; Hay, B. P. J. Am. Chem. Soc. 1989, 111, 230. (b) Beckwith, A. L. J.; Hay, B. P. J. Am. Chem. Soc. 1989, 111, 2674. (c) Beckwith, A. L. J.; Ranger, K. D. J. Org. Chem. 1992, 56, 4954. (d) Beckwith, A. L. J. Tetrahedron 1981, 37, 3073.
  22. 10. (a) Fraser-Reid, B.; Tsang, R. J. Am. Chem. Soc. 1986, 108, 2116. (b) Fraser-Reid, B.; Tsang, R. J. Am. Chem. Soc. 1986, 108, 8102. (c) Fraser-Reid, B.; Alonso, R. A.; Burgey, C. S.; Rao, B. V.; Vite, G. D.; Vollerthun, R.; Zottola, M. A. J. Am. Chem. Soc. 1993, 115, 6666.
  23. 11. (a) Dowd, P.; Choi, S.-C. J. Am. Chem. Soc. 1987, 109, 3493. (b) Dowd, P.; Choi, S.-C. Tetrahedron 1989, 45, 77. (c) Beckwith, A. L. J.; O’Shea, D. M.; Gerba, S.; Westwood, S. W. J. Chem. Soc. Chem. Commun. 1978, 666. (d) Beckwith, A. L. J.; O’Shea, D. M.; Westwood, S. W. J. Am. Chem. Soc. 1988, 110, 2565.
  24. 12. Nishida, A.; Takahashi, H.; Takeda, H.; Tekada, N.; Yonemitsu, O. J. Am. Chem. Soc. 1990, 112, 902.
  25. 15. (a) Kim, S.; Oh, D. H. Synlett 1998, 525. (b) Kim, S.; Jon, S.-Y. Chem. Commun. 1996, 1335. (c) Kim, S.; Cho, C.-H.; Lim, C.-J. J. Am. Chem. Soc. 2003, 125, 9574. (d) Kim, S.; Kee, I. S.; Lee, S. J. Am. Chem. Soc. 1991, 113, 9882.
  26. 16. (a) Clive, D. L. J.; Postema, M. H. D. J. Chem. Soc. Chem. Commun. 1993, 429. (b) Malacria, M.; Devin, P.; Fensterbank, L. Tetrahedron Lett. 1999, 40, 5511. (c) Clive, D. L. J.; Zhang, J. J. Chem. Soc. Chem. Commun. 1997, 549.
  27. 17. (a) Curran, D. P.; Liu, H. J. Org. Chem. 1991, 56, 3463. (b) Curran, D. P.; Palovich, M. Synlett 1992, 631. (c) Curran, D. P.; Diederichsen, U.; Palovich, M. J. Am. Chem. Soc. 1997, 119, 4797.
  28. 18. (a) Pattenden, G.; Boeck, B. D. Tetrahedron Lett. 1998, 39, 6971. (b) Pattenden, G.; Harrington-Frost, N. M. Synlett 1999, 1917. (c) Pattenden, G.; Boeck, B. D. Tetrahedron Lett. 1998, 39, 6975.
  29. 19. (a) Tsai, Y.-M.; Cherng, C.-D. Tetrahedron Lett. 1991, 32, 3515. (b) Curran, D. P.; Jiaang, W.-T.; Palovich, M.; Tsai, Y.-M. Synlett 1993, 403. (c) Tsai, Y.-M.; Chang, S.-Y.; J. Chem. Soc. Chem. Commun. 1995, 981. (d) Tsai, Y.-M.; Tang, K.-H.; Jiaang, W.-T. Tetrahedron Lett. 1993, 34, 1303. (e) Tsai, Y.-M.; Chang, S.-Y.; Shao, Y.-F.; Chu, S.-F.; Fan, G.-T. Org. Lett. 1999, 1, 945. (f) Tsai, Y.-M.; Chang, S.-Y.; Jiaang, W.-T.; Cherng, C.-D.; Tang, K.-H.; Huang, C.-H. J. Org. Chem. 1997, 62, 9089. (g) Tsai, Y.-M.; Huang, C.-H.; Chang, S.-Y.; Wang, N.-S. J. Org. Chem. 2001, 66, 8983.
  30. 23. Bowman, W. R.; Stepheson, P. T.; Terett, N. K.; Young, A. R. Tetrahedron Lett. 1994, 35, 6369.
  31. 24. Takano, S.; Suzuki, M.; Kijima, A.; Ogasawara, K. Chemistry Lett. 1990, 315.
  32. 25. Ogibin, Y. N.; Troyanskii, E. I.; Nikishin, G. I. Izv. Akad. Nauk. SSSR, Ser. Khim. 1975, 1461.
  33. 29. (a) 邵雅芳,國立台灣大學化學研究所碩士論文, 1995 。 (b) Rajanbabu, T. V. Acc. Chem. Res. 1991, 24, 139.
  34. 30. 朱淑芳,國立台灣大學化學研究所碩士論文, 1996 。
  35. 31.Sulmon, P.; Kimpe, N. D.; Schamp, N.; Synthesis 1989, 8.
  36. 32.Hon, Y.-S.; Lin, S.-W.; Lu, L.; Chen, Y.-J. Tetrahedron 1995, 51, 5019.
  37. 33. (a) Zard, S. Z. Angew. Chem. Int. Ed. Engl. 1997, 36, 672. (b) Zard, S. Z.; Boiteau, L.; Boivin, L.; Quiclet-Sire, B.; Saunier, J.-B. Tetrahedron 1998, 54, 2087. (c) Renaud, P.; Sibi, M. P. Radicals in Organic Synthes; Wiley-VCH Verlag GmbH: Weinheim, 2001. and references there in.
  38. 36. Smith III, A. B.; Hirschmann, R.; Liu, H. Org. Lett. 2000, 2, 2037.
  39. 37.Pereyre, M.; Quintard, J.-P.; Rahm, A. Tin in Organic Synthesis; Butterworths & Co. Ltd.: London, 1987. and references there in.
  40. 38. (a) Oshima, K.; Nozaki, K.; Utimoto, K. J. Am. Chem. Soc. 1987, 109, 2547. (b) Oshima, K.; Nozaki, K.; Utimoto, K. Bull. Chem. Soc. Jpn. 1987, 60, 3465.
  41. 39. (a) Davies, A. G.; Roberts, B. P. Chem. Commun. 1966, 298. (b) Davies, A. G.; Roberts, B. P. J. Chem. Soc. (B) 1967, 17. (c) Davies, A. G.; Roberts, B. P. J. Chem. Soc. (B) 1968, 1074. (d) Brindley, P. B.; Allies, P. G. J. Chem. Soc. (B) 1969, 1126. (e) Davies, A. G. Pure. Appl. Chem. 1974, 39, 497.
  42. 40. (a) Hawthorne, M. F.; Reintjes, M. J. Am. Chem. Soc. 1964, 86, 951. (b) Hawthorne, M. F.; Reintjes, M. J. Am. Chem. Soc. 1965, 87, 4585.
  43. 41. (a) Brown H. C.; Rogic, M. M.; Rathke, M. W.; Arase, A.; Matsumoto, H.; Itoh, M.; Suzuki, A. J. Am. Chem. Soc. 1967, 89, 5708. (b) Brown H. C.; Rogic, M. M.; Rathke, M. W.; Kabalka, G. W. J. Am. Chem. Soc. 1967, 89, 5709. (c) Brown H. C.; Kabalka, G.; Honma, S.; Arase, A.; Itoh, M. J. Am. Chem. Soc. 1970, 92, 710.
  44. 42. (a) 郭淑鈴,國立台灣大學化學研究所碩士論文, 1998 。 (b) 林其鋒,國立台灣大學化學研究所碩士論文, 2002 。
  45. 43. Curran, D. P.; Porter, N. A.; Giese, B. Stereochemistry of Radical Reactions; VCH Verlag GmbH: Weinheim, 1996. and references there in.
  46. 44. Komatsu, M.; Araki, F.; Minakata, S.; Ryu, I. Tetrahedron Lett. 1998, 39, 6335.
  47. 45. (a) 陳明仁,國立台灣大學化學研究所碩士論文, 2003 。 (b) Moeller, K. D.; Tinao, L. V. J. Am. Chem. Soc. 1992, 114, 1033.
  48. 47.(a) Lal, G. S. J. Org. Chem. 1993, 58, 2791. (b) Shreeve, J. M.; Singh, R. P. Acc. Chem. Res. 2004, 1, 31.
  49. 48.(a) Breitmaier, E.; Voelter, W. Carbon-13 NMR Spectroscopy; VCH Verlag GmbH: Weinheim, 1990. and references there in. (b) Schneider, H.-J.; Hoppen, V. J. Org. Chem. 1978, 43, 3866.
  50. 49.表四項次 3 使用甲苯為溶劑,加熱到 110 oC 。
  51. 50.表一、表五所使用的氫化正三丁基錫烷,按照所需濃度不同依序加入 0.220 、 0.580 、 1.16 毫升的氫化正三丁基錫烷。
  52. 51.表一、表五的氫化正三丁基錫烷為一次加入。
  53. 53.表六項次 2 所加入的三乙基硼對應化合物 112 的量為 4 當量。
  54. 54. Nagai, M.; Lazor, J.; Wilcox, C. S. J. Org. Chem. 1990, 55, 3440.
  55. 55.表七所使用的三乙基硼,按照所需要的量不同,依序加入 0.800 、 3.00 、 10.0 毫升。
  56. 56.表八所使用的二乙基鋅,按照所需要的量不同,依序加入 0.110 、 0.410 毫升。
  57. 57.化合物 183 、 184 的合成,所使用的試劑當量的比例與 182 相同。
  58. 58.化合物 184 的合成,需要攪拌三天。
Times Cited
  1. 鄭暐霖(2010)。藉由具矽基酮的醣類衍生物進行自由基環化反應之研究。臺灣大學化學研究所學位論文。2010。1-89。