Title

台灣植群之平均科年齡與譜系結構沿海拔梯度之模式

Translated Titles

Mean family age and community phylogenetic structures of Taiwanese woody vegetation along elevation

DOI

10.6342/NTU201902042

Authors

黃駿鏹

Key Words

平均科年齡 ; 群集親緣演化 ; 群落集合 ; 高山群落 ; Mean Family age ; Community Phylogenetics ; Community assembly ; alpine communities

PublicationName

臺灣大學生態學與演化生物學研究所學位論文

Volume or Term/Year and Month of Publication

2019年

Academic Degree Category

碩士

Advisor

王俊能

Content Language

英文

Chinese Abstract

由於環境和歷史過程的多層次影響,要研究群落集合的機制是一項挑戰。然而,分析群落中物種的親緣關係可以提供關於群落如何形成及保留的資訊。兩個主要的假設解釋了沿著環境梯度的物種多樣性模式:1)熱帶生態位保守主義(TNC)和2)熱帶地區(OOT)假設。 TNC預測隨著溫度降低,平均群落的年齡往往更年輕,因為生態棲位受溫度限制,導致某些譜係不斷適應溫帶氣候。相反,OOT假設意味著隨機分佈的譜系快速遷移到較涼爽的氣候,在那裡它們緩慢多樣化,因此缺乏較年輕的譜系。台灣有年輕的地質年代、多樣的氣候條件和陡峭的海拔梯度,是一個適合觀察集合過程的模型系統。在這項研究中,我們專注於確定台灣木本被子植物的潛在機制。通過分析3000多個植被群落圖,我們發現隨著海拔的提升,溫度降低,木本被子植物群落中的親緣關係相關性趨於降低,而平均家庭年齡(MFA)在裸子植物森林影響之前的中等海拔高峰時達到峰值。這種模式與OOT假設是一致的,並且進一步得到了MFA與最冷月最低溫度等因素相關的研究結果的支持。通過將親源分析的方法應用於群落集合,提供有關不同海拔植物群落中物種的生物地理和演化來源的新資訊,我們的結果更多地告訴我們台灣的群落集合機制。

English Abstract

The mechanisms of community assembly are a challenge to investigate due to the multi-level influences from both environmental and historical processes. However, analyzing the phylogenetic relationships of species in a community may provide some insights into how communities are formed and retained. Two leading hypotheses that explain species diversisty patterns along environmental gradients are the 1) Tropical Niche Conservatism (TNC) and 2) Out of Tropics (OOT) hypothesis. TNC predicts that as niches are temperature constrained, when temperature decreases along the altitude only certain adapted lineages can continuously diversify to temperate climate, the mean community clade age tend to be younger. In contrast, the OOT hypothesis signifies a rapid migration of randomly distributed lineages to cooler climates where they diversified slowly, therefore lacking younger lineages. Taiwan is a suitable model system for the observation of the assembly process due to its young geological age, diverse climatic conditions and steep elevation gradient. In this study, we focus on determining underlying mechanisms for the woody angiosperm of Taiwan. By analyzing more than 3000 vegetation community plots, we found that with decreasing temperatures toward higher elevation, phylogenetic relatedness within the woody angiosperm communities tend to decrease while the mean family age (MFA) peaks at mid elevations just before gymnosperm forests influence. This pattern is coherent with the OOT hypothesis and is further supported by findings that show MFA correlates to factors such as lowest minimum temperature of the coldest month. By applying phylogenetic methods to community distributions, our results tell us more about Taiwan’s community assembly mechanisms, providing new information about the biogeographical and evolutionary source of species in plant communities at different elevations.

Topic Category 生命科學院 > 生態學與演化生物學研究所
生物農學 > 生物科學
Reference
  1. Boucher-Lalonde, V., De Camargo, R. X., Fortin, J. M., Khair, S., So, R. I., Vazquez Rivera, H., . . . Currie, D. J. (2015). The weakness of evidence supporting tropical niche conservatism as a main driver of current richness-temperature gradients. Global Ecology and Biogeography, 24, 795-803.
  2. Burns, J. H., & Strauss, S. Y. (2011). More closely related species are more ecologically similar in an experimental test. Proceedings of the National Academy of Sciences, 108, 5302-5307.
  3. Cazzolla Gatti, R., Callaghan, T., Velichevskaya, A., Dudko, A., Fabbio, L., Battipaglia, G., & Liang, J. (2019). Accelerating upward treeline shift in the Altai Mountains under last-century climate change. Scientific Reports, 9, 7678.
  4. Chiou, C. R., Hsieh, C. F., Wang, J-C., Chen, M. Y., Liu, H. Y., Yeh, C. L., ... Song, G. Z. M. (2009). The first national vegetation inventory in Taiwan. Taiwan Journal of Forest Science, 24, 295-302.
  5. Corlett, R. T., & Westcott, D. A. (2013). Will plant movements keep up with climate change? Trends in Ecology & Evolution, 28, 482-488.
  6. Fick, S.E. and R.J. Hijmans. (2017). Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology.
  7. Gerhold, P. , Cahill, J. F., Winter, M. , Bartish, I. V. and Prinzing, A. (2015). Phylogenetic patterns are not proxies of community assembly mechanisms (they are far better). Functional Ecology, 29: 600-614.
  8. Grace, J., Berninger, F., & Nagy, L. (2002). Impacts of climate change on the tree line. Annals of Botany, 90, 537–544.
  9. Grandcolas P., Trewick S.A. (2016). What Is the Meaning of Extreme Phylogenetic Diversity? The Case of Phylogenetic Relict Species. In: Pellens R., Grandcolas P. (eds) Biodiversity Conservation and Phylogenetic Systematics. Topics in Biodiversity and Conservation, 14. Springer, Cham.
  10. Hawkins, B. A., Rueda, M., Rangel, T. F., Field, R., & Diniz-Filho, J. A. F. (2014). Community phylogenetics at the biogeographical scale: cold tolerance, niche conservatism and the structure of North American forests. Journal of Biogeography, 41, 23-38
  11. Huang, T.C., Hsieh, C.F. (1994-2003).Introduction to the flora of Taiwan, 1: geography, geology, climate, and soils.Flora of Taiwan, vol. I–VI, 2nd edn., National Taiwan University, Taipei.
  12. Jin, Y., Qian, H., & Yu, M. J. (2015). Phylogenetic Structure of Tree Species across Different Life Stages from Seedlings to Canopy Trees in a Subtropical Evergreen Broad-Leaved Forest. PLoS One, 10.
  13. Jump, A. S., Huang, T. and Chou, C. (2012). Rapid altitudinal migration of mountain plants in Taiwan and its implications for high altitude biodiversity. Ecography, 35: 204-210.
  14. Kraft, N. J., Adler, P. B., Godoy, O., James, E. C., Fuller, S. and Levine, J. M. (2015). Community assembly, coexistence and the environmental filtering metaphor. Functional Ecology, 29: 592-599.
  15. Letcher S. G. (2010). Phylogenetic structure of angiosperm communities during tropical forest succession. Proceedings. Biological sciences, 277, 97–104.
  16. Li, C. F., Chytry, M., Zeleny, D., Chen, M. Y., Chen, T. Y., Chiou, C. R., . . . Hsieh, C. F. (2013). Classification of Taiwan Forest Vegetation. Applied Vegetation Science, 16, 698-719.
  17. Li, C.-F., Zelený, D., Chytrý, M., Chen, M.-Y., Chen, T.-Y., Chiou, C.-R., . . . Hsieh, C.-F. (2015). Chamaecyparis montane cloud forest in Taiwan: ecology and vegetation classification. Ecological Research, 30, 771-791.
  18. Lin, C.-T., Li, C.-F., Zelený, D., Chytrý, M., Nakamura, Y., Chen, M.-Y., . . . Chiou, C.-R. (2012). Classification of the High-Mountain Coniferous Forests in Taiwan. Folia Geobotanica, 47, 373-401.
  19. Lin, H.-Y., Yang, K.-C., Hsieh, T.-H., & Hsieh, C.-F. (2005). Species Composition and Structure of a Montane Rainforest of Mt. Lopei in Northern Taiwan. Taiwania, 50, 234-249.
  20. Marston, R. A. (2010). Geomorphology and vegetation on hillslopes: Interactions, dependencies, and feedback loops. Geomorphology, 116, 206-217.
  21. Mayfield, M. M. and Levine, J. M. (2010). Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecology Letters, 13: 1085-1093.
  22. McGill, B. J., Enquist, B. J., Weiher, E., & Westoby, M. (2006). Rebuilding community ecology from functional traits. Trends in Ecology & Evolution, 21, 178-185.
  23. Miller, E. T., Farine, D. R., & Trisos, C. H. (2017). Phylogenetic community structure metrics and null models: a review with new methods and software. Ecography, 40, 461-477.
  24. Qian, H., Field, R., Zhang, J. L., Zhang, J., & Chen, S. B. (2016). Phylogenetic structure and ecological and evolutionary determinants of species richness for angiosperm trees inforest communities in China. Journal of Biogeography, 43, 603-615.
  25. Qian, H., & Jiang, L. (2014). Phylogenetic community ecology: integrating community ecology and evolutionary biology. Journal of Plant Ecology, 7, 97-100.
  26. Qian, H., & Jin, Y. (2016). An updated megaphylogeny of plants, a tool for generating plant phylogenies and an analysis of phylogenetic community structure. Journal of Plant Ecology, 9, 233-239.
  27. Qian, H., & Ricklefs, R. E. (2016). Out of the Tropical Lowlands: Latitude versus Elevation. Trends Ecology & Evolution, 31, 738-741.
  28. Qian, H., Zhang, Y. J., Zhang, J., & Wang, X. L. (2013). Latitudinal gradients in phylogenetic relatedness of angiosperm trees in North America. Global Ecology and Biogeography, 22, 1183-1191.
  29. R Core Team (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/.
  30. Ricklefs, R. E. (1987). Community Diversity - Relative Roles of Local and Regional Processes. Science, 235, 167-171.
  31. Ricklefs, R. E. and Schluter, D. (1993). Species Diversity in Ecological Communities: Historical and Geographical Perspectives. University of Chicago Press.
  32. The Plant List (2019). Version 1.1. Published on the Internet; http://www.theplantlist.org/ (accessed 10June 2019).
  33. Su HJ. (1985).Studies on the climate and vegetation types of the natural forests in Taiwan (III)—A scheme of geographical climatic regions.Quarterly Journal of Chinese Forestry, 18:33-44.
  34. Tan, J., Slattery, M. R., Yang, X., & Jiang, L. (2016). Phylogenetic context determines the role of competition in adaptive radiation. Proceedings. Biological sciences, 283, 20160241.
  35. Tang, C. Q., Chiou, C.-R., Lin, C.-T., Lin, J.-R., Hsieh, C.-F., Tang, J.-W., . . . Hou, X. (2013). Plant diversity patterns in subtropical evergreen broad-leaved forests of Yunnan and Taiwan. Ecological Research, 28, 81-92.
  36. Tsirogiannis, C. and Sandel, B. (2016). PhyloMeasures: a package for computing phylogenetic biodiversity measures and their statistical moments. Ecography, 39: 709-714.
  37. Webb, C. O., Ackerly, D. D., McPeek, M. A., & Donoghue, M. J. (2002). Phylogenies and Community Ecology. Annual Review of Ecology and Systematics, 33, 475-505.
  38. Webb, C. O., Losos, J. B., & Agrawal, A. A. (2006). Integrating phylogenies into community ecology. Ecology, 87, S1-S2.
  39. Wiens, J. J., & Donoghue, M. J. (2004). Historical biogeography, ecology and species richness. Trends in Ecology & Evolution, 19, 639-644.
  40. Wu, C.-F., Lin, Y.-P., & Lin, S.-H. (2011). A hybrid scheme for comparing the effects of bird diversity conservation approaches on landscape patterns and biodiversity in the Shangan sub-watershed in Taiwan. Journal of Environmental Management, 92, 1809-1820.
  41. Valiente‐Banuet, A. and Verdú, M. (2007). Facilitation can increase the phylogenetic diversity of plant communities. Ecology Letters, 10: 1029-1036.
  42. Zhang, C., Yang, J., Sha, L., Ci, X., Li, J., Cao, M., . . . Lin, L. (2017). Lack of phylogenetic signals within environmental niches of tropical tree species across life stages. Scientific Reports, 7, 42007.