Title

含氮中孔碳材料的製備與定性

Translated Titles

Preparation and Characterization of Nitrogen Containing mesoporous carbon materials

DOI

10.6845/NCHU.2012.00226

Authors

陳灝元

Key Words

中孔碳 ; 含氮中孔碳 ; 三聚氰胺/甲醛樹脂 ; mesoporous carbon ; nitrogen-containing mesoporous carbon ; melamine/formaldehyde resin

PublicationName

中興大學化學系所學位論文

Volume or Term/Year and Month of Publication

2012年

Academic Degree Category

碩士

Advisor

黃景帆

Content Language

繁體中文

Chinese Abstract

本研究利用三聚氰胺/甲醛樹脂作為碳源;市售二氧化矽作為硬模板或載體,經由碳化複合物和移除二氧化矽來製備中孔碳材並且改變實驗參數探討其形成機制及最佳化條件。透過改變二氧化矽顆粒大小(7nm、14nm、20nm)、二氧化矽比例(25%、33%、50%、60%)、碳化溫度(600℃、700℃、800℃、900℃、1000℃)及溶液pH值(4.5、4.0、3.0、2.0、1.0)等條件,發現所形成的中孔碳材表面特性是不盡相同的。實驗結果顯示7nm和14nm在改變SiO2比例時會影響碳材的孔分佈:25%、33%為雙孔洞分佈(~3nm及18nm)而50%、60%為單一孔洞分佈(~3nm)。在低碳化溫度時複合物形成片狀且孔洞數量較少的碳材,直到800℃以上才有大量的中孔洞結構產生,900℃為最佳化溫度。改變溶液pH值對於碳材的比表面積也影響甚大,變化量高達500m2g-1。本實驗表面積的最佳化條件為7nm 33% 900℃pH 4.0,比表面積高達1345m2g-1。 另外,本研究製備的中孔碳材由於碳源來自高含氮量的三聚氰胺,因此在碳材中參雜大量的氮原子。中孔碳材中的氮原子在許多文獻中視為催化劑的活化點,用來催化燃料電池中陰極的氧氣還原反應,因此可以期待它未來的應用性及發展性。 本研究除了使用氮氣吸附/脫附等溫儀測量碳材表面積、孔分佈及孔體積,穿透式電子顯微鏡(TEM)觀察碳材實際形貌,X光光電子光譜儀(XPS)得知碳材的含氮量之外也利用拉曼光譜儀(Raman)及X光繞射儀(XRD)探討碳材的石墨化程度。

English Abstract

In this study, we use melamine/formaldehyde resin as the carbon precursor; commercial fumed silica as support or hard-template via carbonization composites and removal of silica to prepare mesoporous carbon and change the experimental parameters to investigate formation process and optimization. By changing the particle size of the silica(7nm, 14nm, 20nm), the proportion of silica(25%, 33%, 50%, 60%), carbonization temperature(600℃, 700℃, 800℃, 900℃, 1000℃) and pH value(4.5, 4.0, 3.0, 2.0, 1.0)we found that the formation of mesoporous carbon surface properties is not the same. The experimental results show that 7nm and 14nm in the change of the ratio of silica will affect pore size distribution of mesoporous carbon: 25% and 33% are bimodal porosity(~3nm&18nm)and 50%, 60% are single pore(~3nm). At lower carbonization temperatures, composites will become flakes and poor-porosity carbon material, there will be a large number of pore structure until the temperature is more than 800℃, 900℃ is the best temperature. Changing the pH of solution also has a huge effect on specific surface area of carbon, the changes is up to 500m2g-1. The highest specific surface area of the experimental conditions for 7nm 33% 900℃ pH~4 is 1345m2g-1. Moreover, we prepared mesoporous carbon by the high nitrogen content of melamine as carbon precursor, so they doped a large number of nitrogen atoms. Nitrogen atoms in the mesopurous carbon material in the literature as a active sites for catalytic fuel cell cathode oxygen reduction reaction, so we look forward to its highly application and development in the future. In this study, we used of nitrogen adsorption/desorption isotherm to measure the carbon surface area, pore size distribution and pore volume, transmission electron microscopy to observe the actual morphology of the carbon material, X-ray photoelectron spectroscopy to know nitrogen content and we also used Raman spectroscopy and X-ray diffraction to investigate the degree of graphitization of the carbon materials.

Topic Category 基礎與應用科學 > 化學
理學院 > 化學系所
Reference
  1. 1.C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, “Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism.” Nature 359, 710 (1992).
    連結:
  2. 2.J. S. Beck et al., “A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates.” J. Am. Chem. Soc. 114, 10834 (1992).
    連結:
  3. 3.D. Zhao et al., “Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom pores.” Science 279, 548 (1998).
    連結:
  4. 4.J. Y. Ying, C. P. Mehnert, M. S. Wong, “Synthesis and Applications of Supramolecular-Templated Mesoporous Materials.” Angew. Chem. Int. Ed. 38, 56 (1999).
    連結:
  5. 5.C. Liang, Z. Li, S. Dai, “Mesoporous Carbon Materials: Synthesis and Modification.” Angew. Chem. Int. Ed. 47, 3696 (2008).
    連結:
  6. 6.W. Shen et al., “The effect of carbon precursor on the pore size distribution of mesoporous carbon during templating synthesis process.” Materials Letters 60, 3517 (2006).
    連結:
  7. 7.A.-H. Lu, F. Schuth, “Nanocasting: A Versatile Strategy for Creating Nanostructured Porous Materials.” Adv. Mater. 18, 1793 (2006).
    連結:
  8. 8.C. Liang, K. Hong, G. A. Guiochon, J. W. Mays, S. Dai, “Synthesis of a Large-Scale Highly Ordered Porous Carbon Film by Self-Assembly of Block Copolymers.” Angew. Chem. Int. Ed. 116, 5909 (2004).
    連結:
  9. 9.S. Tanaka, N. Nishiyama, Y. Egashira, K. Ueyama, “Synthesis of ordered mesoporous carbons with channel structure from an organic-organic nanocomposite.” Chem. Commun., 2125 (2005).
    連結:
  10. 10.C. Liang, S. Dai, “Synthesis of Mesoporous Carbon Materials via Enhanced Hydrogen-Bonding Interaction.” J. Am. Chem. Soc. 128, 5316 (2006).
    連結:
  11. 11.K. J. H., K. Bulvinder, M. G. R., “Structure and performance of porous graphitic carbon in liquid chromatography.” J. Chromatogr. 352, 3 (1986).
    連結:
  12. 12.R. Ryoo, S. H. Joo, S. Jun, “Synthesis of Highly Ordered Carbon Molecular Sieves via Template-Mediated Structural Transformation.” J. Phys. Chem. B 103, 7743 (1999).
    連結:
  13. 13.J. Lee, S. Yoon, T. Hyeon, S. M. Oh, K. B. Kim, “Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors.” Chem. Commun., 2177 (1999).
    連結:
  14. 14.S. Han, T. Hyeon, “Novel silica-sol mediated synthesis of high surface area porous carbons.” Carbon 37, 1645 (1999).
    連結:
  15. 15.S. Han, K. Sohn, T. Hyeon, “Fabrication of New Nanoporous Carbons through Silica Templates and Their Application to the Adsorption of Bulky Dyes.” Chem. Mater. 12, 3337 (2000).
    連結:
  16. 16.S. Han, T. Hyeon, “Simple silica-particle template synthesis of mesoporous carbons.” Chem. Commun., 1955 (1999).
    連結:
  17. 17.S. Jun et al., “Synthesis of New, Nanoporous Carbon with Hexagonally Ordered Mesostructure.” J. Am. Chem. Soc. 122, 10712 (2000).
    連結:
  18. 18.R. Ryoo, S. H. Joo, M. Kruk, M. Jaroniec, “Ordered Mesoporous Carbons.” Adv. Mater. 13, 677 (2001).
    連結:
  19. 19.T. Kyotani, L.-f. Tsai, A. Tomita, “Formation of Ultrafine Carbon Tubes by Using an Anodic Aluminum Oxide Film as a Template.” Chem. Mater. 7, 1427 (1995).
    連結:
  20. 20.T. Kyotani, L.-f. Tsai, A. Tomita, “Preparation of Ultrafine Carbon Tubes in Nanochannels of an Anodic Aluminum Oxide Film.” Chem. Mater. 8, 2109 (1996).
    連結:
  21. 21.T. F. Baumann, J. H. Satcher, “Homogeneous Incorporation of Metal Nanoparticles into Ordered Macroporous Carbons.” Chem. Mater. 15, 3745 (2003).
    連結:
  22. 24.T. K., I. N., S. H., H. S., “THE INFLUENCE OF THE GRAPHITIC STRUCTURE ON THE ELECTROCHEMICAL CHARACTERISTICS FOR THE ANODE OF SECONDARY LITHIUM BATTERIES.” Journal of the Electrochemical Society 142, 716 (1995).
    連結:
  23. 25.C. Liang, S. Dai, G. Guiochon, “A Graphitized-Carbon Monolithic Column.” Anal. Chem. 75, 4904 (2003).
    連結:
  24. 26.Z. Li, M. Jaroniec, “Colloid-Imprinted Carbons as Stationary Phases for Reversed-Phase Liquid Chromatography.” Anal. Chem. 76, 5479 (2004).
    連結:
  25. 29.A. B. Fuertes, T. A. Centeno, “Mesoporous carbons with graphitic structures fabricated by using porous silica materials as templates and iron-impregnated polypyrrole as precursor.” J. Mater. Chem. 15, 1079 (2005).
    連結:
  26. 30.B. C. H. Steele, A. Heinzel, “Materials for fuel-cell technologies.” Nature 414, 345 (2001).
    連結:
  27. 31.F. Jaouen et al., “Cross-Laboratory Experimental Study of Non-Noble-Metal Electrocatalysts for the Oxygen Reduction Reaction.” Appl. Mater. Interf. 1, 1623 (2009).
    連結:
  28. 32.X. Wang et al., “Ammonia-Treated Ordered Mesoporous Carbons as Catalytic Materials for Oxygen Reduction Reaction.” Chem. Mater. 22, 2178 (2010).
    連結:
  29. 33.K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, “Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction.” Science 323, 760 (2009).
    連結:
  30. 34.M. Lefevre, E. Proietti, F. Jaouen, J.-P. Dodelet, “Iron-Based Catalysts with Improved Oxygen Reduction Activity in Polymer Electrolyte Fuel Cells.” Science 324, 71 (2009).
    連結:
  31. 35.A. B. Anderson, “O2 reduction and CO oxidation at the Pt-electrolyte interface. The role of H2O and OH adsorption bond strengths.” Electrochimica Acta 47, 3759 (2002).
    連結:
  32. 37.X. Li, G. Liu, B. N. Popov, “Activity and stability of non-precious metal catalysts for oxygen reduction in acid and alkaline electrolytes.” Journal of Power Sources 195, 6373 (2010).
    連結:
  33. 38.T. Onodera, S. Suzuki, T. Mizukami, H. Kanzaki, “Enhancement of oxygen reduction activity with addition of carbon support for non-precious metal nitrogen doped carbon catalyst.” Journal of Power Sources 196, 7994 (2011).
    連結:
  34. 39.R. Bashyam, P. Zelenay, “A class of non-precious metal composite catalysts for fuel cells.” Nature 443, 63 (2006).
    連結:
  35. 40.C. W. B. Bezerra et al., “A review of Fe-N/C and Co-N/C catalysts for the oxygen reduction reaction.” Electrochimica Acta 53, 4937 (2008).
    連結:
  36. 41.D. Geng et al., “High oxygen-reduction activity and durability of nitrogen-doped graphene.” Energy Environ. Sci. 4, 760 (2011).
    連結:
  37. 42.W. Yang, T.-P. Fellinger, M. Antonietti, “Efficient Metal-Free Oxygen Reduction in Alkaline Medium on High-Surface-Area Mesoporous Nitrogen-Doped Carbons Made from Ionic Liquids and Nucleobases.” J. Am. Chem. Soc. 133, 206 (2011).
    連結:
  38. 43.R. Liu, D. Wu, X. Feng, K. Mullen, “Nitrogen-Doped Ordered Mesoporous Graphitic Arrays with High Electrocatalytic Activity for Oxygen Reduction.” Angew. Chem. Int. Ed. 49, 2565 (2010).
    連結:
  39. 44.H. Niwa et al., “X-ray absorption analysis of nitrogen contribution to oxygen reduction reaction in carbon alloy cathode catalysts for polymer electrolyte fuel cells.” Journal of Power Sources 187, 93 (2009).
    連結:
  40. 45.Y. Tang, B. L. Allen, D. R. Kauffman, A. Star, “Electrocatalytic Activity of Nitrogen-Doped Carbon Nanotube Cups.” J. Am. Chem. Soc. 131, 13200 (2009).
    連結:
  41. 46.T. Iwazaki, R. Obinata, W. Sugimoto, Y. Takasu, “High oxygen-reduction activity of silk-derived activated carbon.” Electrochemistry Communications 11, 376 (2009).
    連結:
  42. 47.Y. Shao, J. Sui, G. Yin, Y. Gao, “Nitrogen-doped carbon nanostructures and their composites as catalytic materials for proton exchange membrane fuel cell.” Applied Catalysis B: Environmental 79, 89 (2008).
    連結:
  43. 48.E. J. Biddinger, D. v. Deak, U. S. Ozkan, “Nitrogen-Containing Carbon Nanostructures as Oxygen-Reduction Catalysts.” Top. Catal. 52, 1566 (2009).
    連結:
  44. 49.P. H. Matter, L. Zhang, U. S. Ozkan, “The role of nanostructure in nitrogen-containing carbon catalysts for the oxygen reduction reaction.” Journal of Catalysis 239, 83 (2006).
    連結:
  45. 50.R. A. Sidik, A. B. Anderson, N. P. Subramanian, S. P. Kumaraguru, B. N. Popov, “O2 Reduction on Graphite and Nitrogen-Doped Graphite: Experiment and Theory.” J. Phys. Chem. B 110, 1787 (2006).
    連結:
  46. 51.K. A. Kurak, A. B. Anderson, “Nitrogen-Treated Graphite and Oxygen Electroreduction on Pyridinic Edge Sites.” J. phys. Chem. C 113, 6730 (2009).
    連結:
  47. 52.T. Ikeda et al., “Carbon Alloy Catalysts: Active Sites for Oxygen Reduction Reaction.” J. Phys. Chem. C 112, 14706 (2008).
    連結:
  48. 53.L. S. Panchakarla et al., “Synthesis, Structure, and Properties of Boron- and Nitrogen-Doped Graphene.” Adv. Mater. 21, 4726 (2009).
    連結:
  49. 54.S. Maldonado, K. J. Stevenson, “Influence of Nitrogen Doping on Oxygen Reduction Electrocatalysis at Carbon Nanofiber Electrodes.” J. Phys. Chem. B 109, 4707 (2005).
    連結:
  50. 55.J. R. Pels, F. Kapteijn, J. A. Moulijn, Q. Zhu, K. M. Thomas, “Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis.” Carbon 33, 1641 (1995).
    連結:
  51. 56.G. Lota, B. Grzyb, H. Machnikowska, J. Machnikowski, E. Frackowiak, “Effect of nitrogen in carbon electrode on the supercapacitor performance.” Chemical Physics Letters 404, 53 (2005).
    連結:
  52. 57.A. Lu, A. Kiefer, W. Schmidt, F. S. th, “Synthesis of Polyacrylonitrile-Based Ordered Mesoporous Carbon with Tunable Pore Structures.” Chem. Mater. 16, 100 (2004).
    連結:
  53. 58.K. K. R. Datta, V. V. Balasubramanian, K. Ariga, T. Mori, A. Vinu, “Highly Crystalline and Conductive Nitrogen-Doped Mesoporous Carbon with Graphitic Walls and Its Electrochemical Performance.” Chem. Eur. J. 17, 3390 (2011).
    連結:
  54. 59.W. Li et al., “Nitrogen-containing carbon spheres with very large uniform mesopores: The superior electrode materials for EDLC in organic electrolyte.” Carbon 45, 1757 (2007).
    連結:
  55. 60.W. Li et al., “Nitrogen enriched mesoporous carbon spheres obtained by a facile method and its application for electrochemical capacitor.” Electrochemistry Communications 9, 569 (2007).
    連結:
  56. 61.Y. a. Huang, F. Yang, Z. Xu, J. Shen, “Nitrogen-containing mesoporous carbons prepared from melamine formaldehyde resins with CaCl2 as a template.” Journal of Colloid and Interface Science 363, 193 (2011).
    連結:
  57. 62.A. Wilke, J. Weber, “Hierarchical nanoporous melamine resin sponges with tunable porosity—porosity analysis and CO2 sorption properties.” J. Mater. Chem. 21, 5226 (2011).
    連結:
  58. 63.Y.-R. Dong, N. Nishiyama, M. Kodama, Y. Egashira, K. Ueyama, “Nitrogen-containing microporous carbons prepared from anionic surfactant-melamine/formaldehyde composites.” Carbon 47, 2138 (2009).
    連結:
  59. 64.H. Jin, H. Zhang, H. Zhong, J. Zhang, “Nitrogen-doped carbon xerogel: A novel carbon-based electrocatalyst for oxygen reduction reaction in proton exchange membrane (PEM) fuel cells.” Energy Environ. Sci. 4, 3389 (2011).
    連結:
  60. 65.T. C. Nagaiah, S. Kundu, M. Bron, M. Muhler, W. Schuhmann, “Nitrogen-doped carbon nanotubes as a cathode catalyst for the oxygen reduction reaction in alkaline medium.” Electrochemistry Communications 12, 338 (2010).
    連結:
  61. 66.R. I. Jafri, N. Rajalakshmi, S. Ramaprabhu, “Nitrogen-doped multi-walled carbon nanocoils as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell.” Journal of Power Sources 195, 8080 (2010).
    連結:
  62. 67.T. Maiyalagan, B. Viswanathan, U. V. Varadaraju, “Nitrogen containing carbon nanotubes as supports for Pt-Alternate anodes for fuel cell applications.” Electrochemistry Communications 7, 905 (2005).
    連結:
  63. 70.F. Tuinstra, J. L. Koenig, “Raman Spectrum of Graphite.” J. Chem. Phys. 53, 1126 (1970).
    連結:
  64. 71.A. B. Fuertes, S. Alvarez, “Graphitic mesoporous carbons synthesised through mesostructured silica templates.” Carbon 42, 3049 (2004).
    連結:
  65. 72.C. N.Satterfield, “Heterogeneous Catalysis in Industrial Practice Second Edition.” McGraw-Hill, Inc., (1991).
    連結:
  66. 74.S.Lowell, J. E. Shields, “Powder Surface Area and Porosity, 3rd ed.” Chapman&Hall:London, (1991).
    連結:
  67. 75.P. C. Hiemenz, “Principles of colloid and surface chemistry / Second Edition Revised and Expanded.” MARCEL DEKKER, INC., (1986).
    連結:
  68. 76.J.W.Niemantsverdriet, “Spectroscopy in Catalysis, 3rd ed.” WILEY-VCH, (2007).
    連結:
  69. 77.R. Nonogaki, S. Yamada, T. Araki, T. Wada, “High rate deposition of diamond-like carbon films by sheet-like plasma chemical vapor deposition.” J. Vac. Sci. Technol. A 17, 731 (1999).
    連結:
  70. 78.S. A. Solin, Physica B 99, 443 (1980).
    連結:
  71. 79.M. A. Capano, N. T. McDevitt, R. K. Singh, F. Qian, “Characterization of amorphous carbon thin films.” J. Vac. Sci. Technol. A 14, 431 (1996).
    連結:
  72. 80.H.-c. Tsai et al., “Structure and properties of sputtered carbon overcoats on rigid magnetic media disks.” J. Vac. Sci. Technol. A 6, 2307 (1988).
    連結:
  73. 81.A. Aydın, M. Imamoglu, M. Gulfen, “Separation and Recovery of Gold(III) From Base Metal Ions Using Melamine-Formaldehyde-Thiourea Chelating Resin.” Journal of Applied Polymer Science 107, 1201 (2008).
    連結:
  74. 82.F. Salaun, I. Vroman, “Influence of core materials on thermal properties of melamine-formaldehyde microcapsules.” European Polymer Journal 44, 849 (2008).
    連結:
  75. 83.D. M. SNYDER, T. J. VUK, “Self-Condensation of Aqueous Hexa(methoxymethyl)melamine: Effects of Concentration, pH, and Alcohol Content.” Journal of Applied Polymer Science 46, 1301 (1992).
    連結:
  76. 84.S. Shanmugam, T. Osaka, “Efficient electrocatalytic oxygen reduction over metal free-nitrogen doped carbon nanocapsules.” Chem. Commun. 47, 4463 (2011).
    連結:
  77. 85.L. Feng, Y. Yan, Y. Chen, L. Wang, “Nitrogen-doped carbon nanotubes as efficient and durable metal-free cathodic catalysts for oxygen reduction in microbial fuel cells.” Energy Environ. Sci. 4, 1892 (2011).
    連結:
  78. 86.Y. T. Lee, N. S. Kim, S. Y. Bae, J. Park, “Growth of Vertically Aligned Nitrogen-Doped Carbon Nanotubes: Control of the Nitrogen Content over the Temperature Range 900-1100 °C.” J. Phys. Chem. B 107, 12958 (2003).
    連結:
  79. 22.S. G., “Carbon-Carbon Composites, 1st ed.” Chapman&Hall: New York, (1993).
  80. 23.W. M., Y. O., “Lithium Ion Batteries: Fundamentals and Performance.” Kodansha: Tokyo, (1998).
  81. 27.J.-B. Donnet, T. K. Wang, J. C. M. P. (Eds.), “Carbon fibers.” Marcel Dekker Inc., New York, (1998).
  82. 28.Z. Li, M. Jaroniec, Y.-J. Lee, L. R. Radovic, “High surface area graphitized carbon with uniform mesopores synthesised by a colloidal imprinting method.” Chem. Commun., 1346 (2002).
  83. 36.J. Lipkowski, E. Philip N. Ross, “Electrocatalysis.” VCH Publishers: New York, (1998).
  84. 68.呂宗昕, “奈米科技與光觸媒.” 商周出版, (2003).
  85. 69.許樹恩, 吳泰伯, “X光繞射原理與材料結構分析.” 中國材料科學學會, (1996).
  86. 73.李. 邱. 合譯, “非均勻系催化原理與應用.” 國立編譯館, 渤海堂文化公司, (中華明國七十七年).
Times Cited
  1. 施昀彣(2015)。利用硫代硫酸陰離子作為氧化亞銅立方模板之指向蝕刻劑用以製備金屬氫氧化物奈米盒子。中興大學化學系所學位論文。2015。1-110。