Title

退火處理對氮化鉭-銀奈米複合薄膜之耐磨性與抗菌性的影響

Translated Titles

Effect of annealing on wear-resistant and anti-bacterial properties of TaN-Ag nanocomposite thin films

Authors

曾建誌

Key Words

共同濺鍍 ; 奈米複合薄膜 ; 薄膜 ; TaN-Ag ; C-AFM ; SSPM ; 抗菌 ; co-sputtering ; nanocomposite ; thin films ; TaN-Ag ; C-AFM ; SSPM ; anti-bacterial

PublicationName

中興大學材料科學與工程學系所學位論文

Volume or Term/Year and Month of Publication

2007年

Academic Degree Category

碩士

Advisor

吳威德

Content Language

繁體中文

Chinese Abstract

利用反應式共同濺鍍沉積TaN-Ag奈米複合薄膜於矽基板和工具鋼,此薄膜利用快速退火(Rapid Thermal Annealing, RTA)於400 ℃,分別退火2、4、8分鐘,使銀粒子在TaN基地相和薄膜表面有成核與成長作用,運用AFM「導電性原子力顯微技術」 (Conductive-AFM, C-AFM)、「掃描表面電位顯微技術」(Scanning Surface Potential Microscopy, SSPM)和場發射電子顯微鏡(Field-Emission Scanning Electron Microscopy, FE-SEM)來檢測在薄膜表面析出的奈米銀粒子,本實驗研究薄膜經快速退火處理後,對於耐磨耗與抗菌性的影響,使用奈米壓痕儀器(Nano-indentation)和耐磨耗試驗機(Pin-on-disc Tribometer)來檢測薄膜經過快速退火處理後對機械性質的影響;經量測顯示,快速退火能使奈米銀粒子析出於薄膜表面,因此,薄膜的機械性質和抗菌效果會依退火條件而有不同。 本實驗結果顯示,表面銀粒子尺寸之增加、銀含量增加和快速退火時間之關析;表面銀粒子是一種固體潤滑劑,能降低摩擦係數與磨耗損失率,因此,TaN-Ag奈米複合薄膜能依靠銀含量與快速退火處理來改善機械性質和抗菌性能,從銀含量為5.4%,經過退火8分鐘,其薄膜硬度增加至27GPa,並降低磨耗損失率;因此,銀粒子析出能有效降低摩擦係數與磨耗損失率。然而,另一方面TaN-Ag試片,經過退火4、8分鐘處理,其抗菌時間為24小時,有良好的抗菌效果(>95%)。

English Abstract

TaN–Ag nanocomposite films were deposited by reactive co-sputtering on Si and tool steel substrates. The films were then annealed using RTA (Rapid Thermal Annealing) at 400 ℃ for 2, 4, 8 minutes respectively to induce the nucleation and growth of Ag particles in TaN matrix and on film surface. C-AFM (Conductive Atomic force Microscopy)、SSPM (Surface Scanning Potential Microscopy) and FESEM (Field-Emission Scanning Electron Microscopy) were applied to examine the Ag nano-particles emerged on the surface of these thin films. The effect of annealing on anti-wear and anti-bacterial properties of these films was studied. A nano-indenter and a pin-on-disc tribometer were used to study the effect of annealing on the films’ mechanical properties. The results reveal that annealing by RTA can cause Ag nano-particles to emerge on the TaN surface. Consequently, the mechanical properties of the films will vary depending on annealing conditions, as well as the anti-bacterial behavior. The results also show that the size of the surfaced Ag particles may increase with the increase of Ag content and annealing time. The surfaced Ag may act as a type of solid lubricant and causes the decrease of friction coefficient and wear rate. The improvement of mechanical property and the anti-bacterial of the TaN-Ag nanocomposite films is dependent on Ag content and annealing time. For films containing 5.4 at. % Ag, after annealing for 8 minutes, the films’ hardness may increase and reach a 27GPa. This may also results in the decrease of wear rate. In sum, the exposed Ag can act as a type of solid lubricant which may further decrease the friction coefficient and hence the wear rate. Overall, all the annealed TaN-Ag samples can reach >95% antibacterial efficiency in 24 hrs.

Topic Category 工學院 > 材料科學與工程學系所
工程學 > 工程學總論
Reference
  1. 4. Ranjana Saha, John A. Barnard, ”Effect of structure on the mechanical properties of Ta and Ta(N) thin films prepared by reactive DC magnetron sputtering,” J. of Crystal Growth, Vol.174, pp.495-500,1997.
    連結:
  2. 6. Murday AJ,Hochstitzky A,Mansfield J,et al.A prospective controlled trial of St.Jude versus starr edwards aortic and mitral valve prostheses.Ann Thorac Surg,Vol.76(1), pp. 66-73, 2003.
    連結:
  3. 7. Remadi JP,Baron O,Tribouilloy C,et al.Bivalvular mechanical mitral aortic valve replacement in254patients:long-term reults-a22year follow-up.Ann Thorac Surg,Vol.76(2), pp.487-492, 2003.
    連結:
  4. 10. C. C. Chang, J.S. Jeng, J.S. Chen,” Microstructural and electrical characteristics of reactively sputtered Ta-N thin films,” Thin Solid Films, Vol.413(1-2), pp.46-51, 2002.
    連結:
  5. 11. T. Riekkinen, J. Molarius, T. Laurila, A. Nurmela, I. Suni, J.K. Kivilahti, “Reactive sputter deposition and properties of TaxN thin films, “Microelectronic Engineering, Vol.64(1-4), pp.289-297, 2002.
    連結:
  6. 12. K. Radhakrishnan, N.G. Ing, R. Gopalakrishnan, “Reactive sputter deposition and characterization of tantalum nitride thin films,“ Materials Science and Engineering: B, Vol.57 (3), pp. 224-227, 1999.
    連結:
  7. 13. Q.Y. Zhang, X.X. Mei, D.Z. Yang, F.X. Chen, T.C. Ma, Y.M. Wang, F.N. Teng, “Preparation, “structure and properties of TaN and TaC films obtained by ion-beam-assisted deposition,”Nucl. Inst. & Meth. in Phys. Res. B, Vol.127-128, pp.664-668, 1997.
    連結:
  8. 14. Momtchil Stavrev, Dirk Fischer, Christian Wenzel, Kurt Drescher, Norbert Mattern, “Crystallographic and morphological characterization of reactively sputtered Ta, Ta-N and Ta-N-O thin films,” Thin Solid Films, Vol.307, pp.79-88, 1997.
    連結:
  9. 15. K. Yuan-Zhu, Y. Jun and O. Qin, “Surface modification of M50 steel by dual-ion-beam dynamic mixing,” Surface and Coatings Technology, Vol.66(1-3), pp.326-329, 1994.
    連結:
  10. 16. Nelcy D.S. Mohallem, Luciana M. Seara, “Magnetic nanocomposite thin films of NiFe2O4/SiO2 prepared by sol–gel process ,” Applied Surface Science, Vol.214, pp.143-150, 2003.
    連結:
  11. 17. E. Martinez, R. Sanjines, A. Karimi, J. Esteve, F. Levy, “Mechanical properties of nanocomposite and multilayered Cr–Si–N sputtered thin films ,” Surface and Coatings Technology, Vol.180-181, pp.570-574, 2004.
    連結:
  12. 18. S. Veprek and A. S. Argon, ”Mechanical properties of superhard nanocomposites ,” Surface and Coatings Technology, Vol.146-147, pp.175-182, 2001.
    連結:
  13. 19. A. Biswas, O.C. Aktas, J. Kanzow, U. Saeed, T. Strunskus, V. Zaporojtchenko and F. Faupel, “Polymer-metal optical nanocomposites with tunable particle plasmon resonance prepared by vapor phase co-deposition,” Materials Letters 58, I 9, pp.1530, 2004.
    連結:
  14. 20. C. M. Wang, J. H. Hsieh, Y. Q. Fu, C. Li, T. P. Chen, and U. T. Lam, “Electrical properties of TaN-Cu nanocomposite thin films,” J. Ceramics Int., Vol.30, pp.1879, 2004.
    連結:
  15. 22. Sam Zhang, Deen Sun, Yongqing Fu, Hejun Du, “Effect of sputtering target power on microstructure and mechanical properties of nanocomposite nc-TiNya-a-SiNx thin films,” Thin Solid Films, Vol.447-448, pp.462-467, 2004.
    連結:
  16. 23. J.H.Hsieh, C.M.Wang, and C. Li, “Deposition and characterization of TaN–Cu nanocomposite thin films,” Surface and Coatings Technology, Vol.200(10), pp.3179-3183, 2006.
    連結:
  17. 24. J. Musil and J. Vlcek, “Magnetron sputtering of hard nanocomposite coatings and their properties,” Surface and Coatings Technology, Vol.142-144, pp.557-566, 2001.
    連結:
  18. 28. D.P. Dowling, K. Donnelly, M.L. McConnell, R. Eloy, M.N. Arnaud,“Deposition of anti-bacterial silver coatings on polymeric substrates,” Thin Solid Films, Vol.398-399, pp.602-606, 2001.
    連結:
  19. 34. N. Terao, “Structure of Tantalum Nitrides,” Japan J. Appl. Phys., Vol.10, pp.248-259, 1971.
    連結:
  20. 35. S.M.Rossnagel, “Handbook of Plasma Processing Technology,” 1982.
    連結:
  21. 44. Yin-Yu Chang , Da-Yung Wang, Chi-Yung Hung,”Structural and mechanical properties of nanolayered TiAlN/CrN coatings synthesized by a cathodic arc deposition process,”Surface & Coatings Technology, Vol. 200 , pp.1702 – 1708, 2005.
    連結:
  22. 45. W.C. Oliver and G.M.Phar, “An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experimests,” Journal of Materials Research, Vol.7 No.6, pp.1564-1583, 1992.
    連結:
  23. 46. Jamin, N., Dumas, P., Moncuit, J., Fridman, W.H., Teillaud, J.L., Carr, G.L. and Williams, G.P., “Highly resolved chemical imaging of living cells by using synchrotron infrared microspectrometry,” Proc. Natl. Acad. Sci. U. S. A., Vol.95, pp.4837-4840, 1998.
    連結:
  24. 47. Wetzel, D. L. and LeVine, S. M.,”Imaging molecular chemistry with infrared microscopy,” Science, Vol.285, pp.1224-1225, 1999.
    連結:
  25. 48. Dong, A., Huang, P. and Caughey, W.S., “Protein secondary structures in water from second-derivative amide I infrared spectra,” Biochemistry, Vol.29, pp.3303-3308, 1990.
    連結:
  26. 49. Susi, H. and Byler, D. M., “Resolution-enhanced Fourier transform infrared spectroscopy of enzymes,” Methods Enzymol., Vol.130, pp.290-311, 1986.
    連結:
  27. 50. James, D. I., Maddams, W. F. and Tooke, P. B., ”The use of Fourier deconvolution in infrared spectroscopy. Part I: studies with synthetic single-peak system,” Appl. Spectrosc., Vol.41, pp.1362-1370, 1987.
    連結:
  28. 51. Moffatt, D. J. and Mantsch, H. H., “Fourier resolution enhancement of infrared spectral data,” Methods Enzymol. Vol.210, pp.192-200, 1992.
    連結:
  29. 52. T. Riekkinen , J. Molarius , T. Laurila , A. Nurmela, I. Suni, J.K. Kivilahti, “R eactive sputter deposition and properties of TaN thin films,” Microelectronic Engineering, Vol.64, pp.289–297, 2002.
    連結:
  30. 53. G.S. Chena, P.Y. Lee, S.T. Chen, “Phase formation behavior and diffusion barrier property of reactively sputtered tantalum-based thin films used in semiconductor metallization,” Thin Solid Films, Vol.353, pp.264-273, 1999.
    連結:
  31. 54. T. de los Arcos, P. Oelhafen, U. Aebi, A. Hefti, M. D.uggelin, D. Mathys, R. Guggenheim, “Preparation and characterization of TiN–Ag nanocomposite films,” Vacuum, Vol.67, pp.463–470, 2002.
    連結:
  32. 55. Gilad Haran, “Single Molecule Raman Spectroscopy and Local Work Function Fluctuations,” Israel Journal of Chemistry, Vol. 44, pp.385–390, 2004.
    連結:
  33. 56. B.R. Rogers, “Underlayer work function effect on nucleation and film morphology of chemical vapor deposited aluminum,” Thin Solid Films, Vol. 408, pp.87–96, 2002.
    連結:
  34. 57. J. Musil, ” Hard and superhard nanocomposite coatings,” Surface and Coatings Technology, Vol.125, pp.322–330, 2000.
    連結:
  35. 參考文獻
  36. 1. 小林道雄,“Antibacterial Metal Surface Treatment,”表面技術, 第四十九期, pp.433, 1998.
  37. 2. 張立德, “奈米材料,” 五南出版社, 2002.
  38. 3. 馬振基, “奈米材料科技原理與應用,” 全華科技圖書股份有限公司, 2005.
  39. 5. J. Schiotz , Proceeding of the 22nd Riso Int. Sym. on Mater. Sci. Roskilde, Denmark, pp.127, 2001.
  40. 8. 蔣書文, 尹光福, 鄭昌琼, “類金鋼石碳膜/Ti6Al4V钛合金梯度材料的生物摩擦學性能研究,”航天醫學與醫學工程, 第十四卷第四期, pp.282-285, 2001.
  41. 9. 盧永要, 崔振鋒, 楊賢金, “各種材料在人工心臟瓣膜中的應用,” 金屬熱處理, Vol. 29(9), pp.23-25, 2004.
  42. 21. S. Neralla, D. Kumar, S. Yarmolenko, J. SanKar, Composites: Part B, Vol.35, pp.157, 2004.
  43. 25. F.R.deBoer, R.boom, W.C.M.Mattens, A.R.Miedema, A.K.Niessen, “COHESION IN METALS TRANSITION METAL ALLOYS,”1988.
  44. 26. 李中文, 細菌之謎,” 晨星出版社, 2006.
  45. 27. 季君暉, 史維明, “抗菌材料,”化學工業出版社, 2004.
  46. 29. 金宗哲, “無機抗菌材料及應用,”化學工業出版社, 2004.
  47. 30. 李榮久, “陶瓷-金屬複合材料,”冶金工業出版社,1995.
  48. 31. 徐國財, 張立德, “奈米複合材料,” 五南出版社, 2004.
  49. 32. 陳光華, 鄧金祥, “奈米薄膜技術與應用,” 五南出版社, 2005.
  50. 33. 柯賢文, “表面與薄膜處理技術,” 全華科技, 2005.
  51. 36. 李世鴻, “半導體工程原理,” 全威圖書, 1999.
  52. 37. Brain Campman, “Chap.3 Plasma,” 1980.
  53. 38. 陳力俊, “微電子材料與製程,” 中國材料科學學會, 2000.
  54. 39. 王志良, “濺鍍硼化鈦與氮化硼擴散阻礙層特性之研究,” 國立成功大學材料科學暨工程學系碩士論文, 1999.
  55. 40. John L. Vossen and Wemer Kerm, “Thin Film Process,” Academic Proc., pp.134, 1991.
  56. 41. 國科會精密儀器發展中心 著, “真空技術與應用,” 全華科技, 2004.
  57. 42. 周森,”複合材料-奈米.生物科技,”全威圖書有限公司, 2004.
  58. 43. http://www.reade.com/Products/Nitrides/Tantalum-Nitride-(TaN)-Powder.html