Title

應用假設情境於台灣森林生態區影響的評估

Translated Titles

Application of Scenarios to the Impact Assessment of Forest Life Zones in Taiwan

DOI

10.6845/NCHU.2006.00192

Authors

陳瑋旋

Key Words

衝擊 ; Holdridge ; SRES ; 假設情境 ; Forest Grid ; Impact ; Holdridge ; SRES ; Scenarios ; Forest Grid

PublicationName

中興大學森林學系所學位論文

Volume or Term/Year and Month of Publication

2006年

Academic Degree Category

碩士

Advisor

馮豐隆

Content Language

繁體中文

Chinese Abstract

為了預測、評估CO2濃度增加的環境下氣候變遷對森林生態區帶來的衝擊,我們使用Hodridge生態分區、IPCC SRES假設情境與Forest-Grid來模擬及推測台灣生育地因子的溫度、雨量與蒸發散量的改變與生態分區的變化。Hodridge生態區模式係由生物溫度,年雨量與潛在土壤水分蒸發散比例三個因子決定其生態區的類別。IPCC SRES的情境模擬中,可分成了四種:A1(Rapid Global Growth Scenario)、A2(Regional Growth Scenario)、B1(Global Service Economy Scenario)、B2(Increasing Population Scenario),用於建立未來全球與區域的發展模型。在這4種情景中,A表示著重於經濟發展,B則表示以環境的保護為主,1表示適用於全球,2則表示適合於區域。由這4個符號可劃分出四大類型的未來發展情境模擬。 台灣屬於區域部份,假設在未來某時期大氣中CO2濃度到達或超過工業革命時的兩倍(560ppm)時,在SRES-A2(國內或區域經濟發展迅速、資源持續利用情景)及SRES-B2(區域可永續發展、進行環境保護情景)下,氣溫與雨量改變的情境模擬。此種模擬由大氣環流模式(GCMs)模擬未來30年、60年與90年的氣溫與雨量變化,依全球分成96*48個區域,而台灣則分布於其中的三個區域,將各個區域內的氣象站暨雨量站以最近30年的資料為基準,配合SRES在網格點上的變化情形個別模擬出未來的溫度雨量變化,再藉由空間推估技術,使用趨勢面法推估全台灣的氣溫分布,克利金法推估全台灣雨量分佈,藉此得到變遷後的Holdridge生態分區。 藉由數值計算方式的不同,將氣溫與雨量數據分為”先推估後計算”與先計算後推估”兩部分。分別是先計算出月均溫與月雨量後做空間推估,再進行年均溫與年雨量的網格計算;與先計算出年均溫與年雨量後直接做空間推估。 最後將氣溫、雨量與潛在蒸發散比例變化,配合Forest Grid(馮豐隆與吳俊霖,2005)與變遷後的各Holdridge生態分區作整理,我們知道在SRES-A2的模擬之下,氣溫上升、雨量下降,造成了Holdridge生態區中「熱帶濕潤森林」與「熱帶乾燥森林」的大幅增加,且集中在台灣西半部。而在SRES-B2的模擬,雖然同樣是氣溫上升,但上升的幅度較小,雨量下降也較A2少,因此在「熱帶乾燥森林」增加的面積就不比SRES-A2結果來的大,山區的「副熱帶山坡潮濕森林」減少的面積也比較少。若以時間來說,SRES-A2&B2的Holdridge生態區變化一開始在短期時集中在東北部及西南部,接著在中期、長期時擴大到整個台灣;變化情形是熱帶森林生態區由低海拔往高海拔增加、高海拔冷溫帶、副熱帶森林生態區面積減少等。另外針對森林界線以上之裸露地,配合Holdridge生態分區,找出Holdridge無法解釋的區域與位於森林界線上裸露地、Holdridge生態區的變化,可發現冷溫帶山地雨林與北方亞高山雨林面積增加,整個植生有往高海拔上升的情形產生。藉由結果可以知道在資料計算上,以”先推估後計算”為比較好的處理方式,也較符合現況。而這些資料可以評估氣候變遷對台灣生態區的影響,並且提供參考。

English Abstract

In order to evaluate the impact of climate change under the enviroment which CO2 concentration in atmosphere is increasing, we used the Holdridge life zone classification model, IPCC SRES scenarios and Forest-Grid to simulate and predict future habitant factors and ecoregion in Taiwan. Holdridge model that includes three decision factors: biotemperature, annual precipitation and potential evapotranspiration ratio. These three factors determine the classification of its life zones. There are four types: A1 (Rapid Global Growth Scenario), A2 (Regional Growth Scenario), B1 (Global Service Economy Scenario), B2 (Increasing Population Scenario) in the scenarios of IPCC SRES. These scenarios are used to build the whole world models of future. In these 4 types of scenarios, A showed that is favorable to economic development, B showed that is favorable at protection of the environment, 1 is focused on the global, 2 is focused on the local. The global situation of future that can divide into four major types by these 4 symbols “A, B, 1 and 2”. Taiwan is a regional part in the whole world, we simulate the temperature and precipitation under twice CO2 (560ppm) concentration of industrial revolution in the atmosphere, the simulation results of the temperature and precipitation change in SRES-A2 and SRES-B2. This simulation is dealing with temperature and rainfall in the climate simulation of following 30 years, 60 years and 90 years in the future by GCMs. There are 96*48 zones in the IPCC SRES simulation, and three zones include in Taiwan. We proceed the climate data of each every weather station and rainfall station in the past 30 years and be a base of materials, and we simulate the specific future change by SRES. By spatial interpolation, we use “trend” to interpolate the temperature distribution of Taiwan, and “Kriging” were used to interpolate the rainfall distribution of Taiwan. Finally, we could get Holdridge life zones after SRES-A2&B2 scenarios of climate changes. We divided the procedures to "Spatial interpolation before calculation" and "Spatial interpolation after calculation". "Spatial interpolation before calculation" is a method that calculates monthly average temperature and monthly rainfall and then proceeds spatial interpolation before raster calculation of annual average temperature and annual rainfall. "Spatial interpolation after calculation" is a method that proceeds spatial interpolation after data calculation of annual average temperature and annual rainfall. We estimated the difference of temperature, rainfall and potential evapotranspiration ratio and Holdridge life zones with Forest Grid (Feng and Wu, 2005). The simulation results showed the temperature rises, and the rainfall reduces in SRES-A2 which caused the "Tropical Moist Forest" and "Tropical Dry Forest" of Holdridge life zones increase in western Taiwan. The temperature rises in SRES-B2 is less than that of SRES-A2, but the rainfall increase. So the area of "Tropical Dry Forest" increase less than SRES-A2, and the reduced area of "Subtropical Lower Montane Moist Forest" of the mountain area is less too. The Holdridge life zones of SRES-A2&B2 change in the northeast and the southwest of Taiwan in a short-term at the beginning, then changes expand to the whole Taiwan in medium-term and long-term. The tropical forest life zones were from low elevation to high elevation.The area of cool temperate and subtropical forest life zones reduce at high elevation. Specially, we found some area that Holdridge could not define the life zone and bared areas over the "forest line". We know the area of "Cool Temperate Montane Rain Forest" and 'Boreal Subalpine Rain Forest" increase, and the vegetation zone rises. We could know "Spatial Interpolation before Calculation" is a better method in data calculating and fits in with the research result of present situation. These data could supply the information to do impact assessment of climate changes to ecological environment of Taiwan in the future.

Topic Category 農業暨自然資源學院 > 森林學系所
生物農學 > 森林
Reference
  1. 林務局(1995)第三次台灣資源及土地利用調查。台灣省農林廳林務局。
    連結:
  2. 童慶斌、楊奕岑(2004)氣候變遷對台灣河川生態之衝擊。全球變遷通訊雜誌 44期:18~24
    連結:
  3. 羅悅心、關秉宗(1999)氣候變遷對台灣中部山區植物群系之影響(一) 以Holdridge生物區帶模式評估。台大實驗林研究報告 13(3):241~253。
    連結:
  4. IPCC, 2001. Climate Change 2001: The Scientific Basis.
    連結:
  5. Box, E. O., 1981. Macroclimate and Plant Forms: a Introduction to Predictive Modeling in Phytogeography. Hague: Dr. W. Junk Publishers, pp. 258.
    連結:
  6. Burrogh, P. A, 1986. Principles of Geographical Information System for Land Resource Assessment. Oxford New York. 194pp.
    連結:
  7. Burrough, P. A. and R. A. McDonnell, 1998, Principles of Geographical Information Systerms. Oxford University Press. 333pp.
    連結:
  8. Chen, X., X. S. Zhang and B. L. Li, 2003. The possible response of life zones in China under global climate change, Global and Planetary Change 38: 327-333.
    連結:
  9. Cramer, W. P. and R. Leemans, 1993. Assessing impacts of climate changes on vegetation using climate classification systems. In: Lolomon, A. M. and H. H. Shugart (eds). Vegetation Dynamics & Global Change. Pp. 10-217. Chapman and Hall, New York.
    連結:
  10. Holdridge, L. R, 1947. Determination of world plant formation from simple climatic data. Science 105: 367-369.
    連結:
  11. Holdridge, L. R, 1959. Simple Method for Determining Potential Evaportranspiration from Temperature Data. Science. 130:572.
    連結:
  12. 吳昶清(2002)應用生育地因子評估立地品位。國立中興大學森林學研究所論文。
  13. 高堅泰(1999)群集分析法應用於台灣生育地之研究。國立中興大學森林學研究所論文。
  14. 高堅泰、馮豐隆(2001)森林生育地因子之空間推估與生育地分類。中華林學季刊34(2)︰167~184。
  15. 黃志成(1997)森林地景監測之研究-以惠蓀林場為例。國立中興大學森林學研究所博士論文p.34~35。
  16. 黃啟峰(2002)COP7後CDM之進展與我國參與之可能性分析。氣候變化綱要公約 資訊速報 第三十四期。
  17. 楊國楨(1988)台灣冷杉、玉山圓柏-兩種台灣高海拔植物。科學月刊9(12):894~899。
  18. 馮豐隆、黃志成(1997)空間模式應用於林分結構母樹推估之研究。中興大學實驗林研究季刊 19(2):57~75。
  19. 馮豐隆、高堅泰(1999)應用克利金推估模式於降雨製圖。台大實驗林研究報告 13(2):155~163。
  20. 馮豐隆、高堅泰(2001)Holdridge生態區分類方法在台灣的應用與模擬。林業研究季刊23(1)︰83-100。
  21. 馮豐隆(2002)假設情境及其在氣候變遷上之應用。台灣林業28(4):24~32。
  22. 馮豐隆、吳俊霖(2005)ForestGrid-A Powerful Tool fot Intergrating, Displaying, Querying and Analyzing Theme Maps. 森林生態系永續經營研討會論文集 p.Ⅲ-14。
  23. 蔡玉琴(1997)淡水河流域降雨時空分析集推估-地理資訊系統的應用。師大地理研究報告26:171~177。
  24. 中央氣象局 http://www.cwb.gov.tw/index-f.htm
  25. 中興大學森林調查測計研究室2002年圖層資料
  26. 楊國禎,台灣高海拔針葉林的植被生態摘要,http://tnl.org.tw/article/eco/alpeco.htm
  27. 經濟部水資源統一規劃委員會。1989 台灣第須雨量紀錄。
  28. 童慶斌(2004)氣候預測在衝擊影響評估之應用-降尺度與不確定http://www.cc.ncu.edu.tw/~sui/chinese/course.htm
  29. 賴國祥(1994)台灣的亞高山生態系簡介。教育部自然生態解說營,http://nature.edu.tw/93result/tai-zhong/index.htm
  30. ESRI. 1996. Using the ArcView Spatial Analyst. ESRI. pp.84-92.
  31. IPCC, 2001. Special Report on Emissions Scenarios.
  32. Joheston, K., J. M. V. Hoef, K. Kirvoruchko, and N. Lucas, 2001, Using ArcGis Geostastical Analyst. ESRI 300 pp.
  33. Holdridge, L. R, 1967. Life Zone Ecology Tropical Science Center. San Jose, Costa Rica.
Times Cited
  1. 賴鴻年(2010)。利用水質模式探討氣候變遷對河川生態之衝擊。成功大學水利及海洋工程學系學位論文。2010。1-76。