Title

以低溫水熱-化學電池法於鍍氮化鋯膜矽基材上製備鋯酸鋇膜之研究

Translated Titles

Synthesis of BaZrO3 films on ZrN-coated Si by a low temperature hydrothermal-galvanic couple method

DOI

10.6845/NCHU.2007.00339

Authors

鄧煥平

Key Words

鋯酸鋇 ; 氮化鋯 ; 水熱化學電池法 ; 水熱法 ; barium zirconate ; ZrN ; hydrothermal ; galvanic couple ; thin films

PublicationName

中興大學材料科學與工程學系所學位論文

Volume or Term/Year and Month of Publication

2007年

Academic Degree Category

碩士

Advisor

呂福興

Content Language

繁體中文

Chinese Abstract

摘要 本研究主要是利用新穎之水熱-化學電池之製程方法,於鍍氮化鋯膜矽基材 (ZrN/Si) 上在低溫的水熱環境下 (<100˚C) 製備BaZrO3膜,而文獻中從未使用過此方法或基材來進行BaZrO3膜之製備或研究。實驗中是以0.5 M醋酸鋇 (Ba(CH3COO)2) 與2 M氫氧化鈉(NaOH) 之混合溶液做為反應溶液,並探討改變反應時間及溫度對於BaZrO3膜成長之影響。在本研究中亦使用水熱法與水熱-化學電池法結果比較。另外亦選用不同的基材,如鍍鋯膜矽基材 (Zr/Si) 和Zr塊材與ZrN/Si基材結果之對照比較。經由X光繞射分析結果確認,利用水熱法及水熱-化學電池法均可以於ZrN/Si上在小於100˚C之低溫環境,製備出具有優選方向之結晶BaZrO3膜。以場發射掃描式電子顯微鏡觀察試片反應後之厚度以及橫截面與表面形貌影像,在研究中顯示出於ZrN/Si製備BaZrO3膜時,單以水熱法在90˚C反應24小時後,可形成800 nm厚之BaZrO3膜,其表面為塊狀形貌。若以水熱-化學電池法製備,則於90˚C反應8小時後,就已形成將近1μm厚之BaZrO3膜,其表面則呈現奈米顆粒形貌;當反應15小時後,生成BaZrO3之膜厚更高達2μm以上,為目前文獻所得膜厚約七倍,並形成之BaZrO3膜具有奈米層狀結構。當溫度固定時,所形成BaZrO3之顆粒與其膜厚隨著反應時間增加而增加,而且BaZrO3膜之生成量與ZrN基材之消耗量符合化學計量之關係,從中顯示出本研究方法可以使絕大部分ZrN基材轉變成BaZrO3膜。綜合實驗結果,利用水熱-化學電池法比水熱法更能明顯降低BaZrO3膜生成之溫度以及縮短反應時間,原因在於水熱-化學電池的方法乃藉由兩極之電位差形成加速離子遷移之驅動力,進而促使氧化還原加速反應,因此可以降低傳統水熱法的反應溫度與時間。而使用Zr/Si和Zr塊材當做與ZrN之反應基材對照,研究中發現不論是以水熱法或是水熱-化學電池法,在溫度95˚C反應24小時後,皆無法於Zr/Si與Zr塊材上生成BaZrO3膜,其中的原因可能與基材的晶粒大小和ZrN中之N原子在反應過程的參與有關。

English Abstract

Abstract The objective of this research is to synthesize barium zirconate (BaZrO3, BZO) films on ZrN-coated Si (ZrN/Si) by a low temperature (<100˚C) hydrothermal-galvanic couple method. ZrN/Si specimens were soaked in 0.5 M Ba(CH3COO)2 and 2 M NaOH mixed alkaline solutions with a galvanic couple setup in the temperatures range of 55-95 ˚C for 1-24 h. The hydrothermal method was also conducted for comparison. Meanwhile, bulk-Zr and Zr-coated Si (Zr/Si) would also be used as substrates for comparison. X-ray diffraction results confirmed that cubic BZO films with preferred orientation were successfully prepared on ZrN/Si below 100˚C by both the hydrothermal method and the hydrothermal-galvanic couple method. The surface morphology and thickness of obtained BZO films was investigated by field-emission scanning electron microscopy. The thickness of obtained BZO films with irregular morphology was about 800 nm at 90˚C for 24 h by the hydrothermal method. As for the hydrothermal-galvanic couple method, the thickness of obtained BZO films with fine particles could reach 1 μm at 90˚C for 8 h. The BZO layer thickness increased up to 2 μm after 15 h. The particle size and thickness of BZO films increased rapidly with increasing temperature. Most of ZrN could be converted into BZO films during the reaction. The hydrothermal-galvanic couple method compared to the hydrothermal method could reduce the reaction time and temperature for forming BZO films, which is due to the potential difference between the electrodes. The voltage drop could enhance the oxidation rate. In comparation BZO films could not be formed on the Zr/Si and bulk-Zr substrates even at 95 C for 24 h by both the hydrothermal method and the hydrothermal-galvanic couple method. The grain size of the substrates and N atoms may play an important role in the reaction between ZrN and alkaline solutions.

Topic Category 工學院 > 材料科學與工程學系所
工程學 > 工程學總論
Reference
  1. [1] S. Karthäuser1, E. Vasco, R. Dittmann, and R. Waser, “Fabrication of arrays of SrZrO3 nanowires by pulsed laser deposition,”Nanotechnology, 15 (2004) S122.
    連結:
  2. [2] T. Omata, Y. Noguchi, and S. Otsuka-Yao-Matsuo, “Infrared study of high-temperature proton-conducting aliovalently doped SrZrO3 and BaZrO3 formation of YO6 Clusters in Y-Doped SrZrO3,” J. Electrochem. Soc., 152 (2005) E200.
    連結:
  3. [3] A.-M. Azad, S. Subramaniam, and T. W. Dung, “On the development of high density barium metazirconate (BaZrO3) ceramics,”J. Alloys Comp., 334 (2002) 118.
    連結:
  4. [4] N. M. Alford, A. Templeton, and S. J. Penn, “A simple process for manufacturing barium zirconate crucibles,”Supercond. Sci. Technol., 11 (1998) 703.
    連結:
  5. [5] A. Erb, E. Walker, and R. Flükiger, “BaZrO3: the solution for the crucible corrosion problem during the single crystal growth of high-Tc superconductors REBa2Cu3O7-δ; RE=Y, Pr ,” Physica C, 245 (1995) 245.
    連結:
  6. [6] A. Erb, E. Walker, and R. Flükiger, “The use of BaZrO3 crucibles in crystal growth of high-Tc superconductors progress in crystal growth as well as in sample quality,”Physica C, 258 (1996) 9.
    連結:
  7. [7] M. Toshiyuki, K. Yasuhiro, F. Norifumi, M. Kenji, and I. Taichiro, “Crystal growth and interfacial characterization od dielectric BaZrO3 thin films on Si Substrates,”Jpn. J. Appl. Phys., 41 (2002) 6639.
    連結:
  8. [8] C. D. Dimitrakopoulos, S. Purushothaman, J. Kymissis, A. Callegari, and J. M. Shaw,“Low-voltage organic transistors on plastic comprising high-dielectric constant gate insulators,”Science, 283 (1999) 822.
    連結:
  9. [9] S. Hodjati, K. Vaezzadeh, C. Petit, V. Pitchon, and A. Kiennemann, “Absorption/desorption of NOx process on perovskites: performances to remove NOx from a learn exhaust gas,”Appl. Catal. B, 26 (2000) 5.
    連結:
  10. [10] J. B. Goodenough, A. Manthiram, and J. –F. Kuo, “Oxygen diffusion in perovskite-related oxides,”Mater. Chem. Phys., 35 (1993) 221.
    連結:
  11. [12] J. Gu, G. Barber, S. Tung, and R. J. Gu,“Tool life and wear mechanism of uncoated and coated milling inserts”Wear, 225 (1999) 273.
    連結:
  12. [13] H. Holleck, “Material selection for hard coatings,”J. Vac. Sci. Technol. A4, (1986) 2661.
    連結:
  13. [15] J.-H. Huang, C.-Y. Hsu, S.-S. Chen and G.-P. Yu,“Effect of substrate bias on the structure and properties of ion-plated ZrN on Si and stainless steel substrates,”Mat. Chem. Phys., 77 (2002) 14.
    連結:
  14. [16] M. B. Takeyama, T. Itoi, E. Aoyagi, and A. Noya, “High performance of thin nano-crystalline ZrN diffusion barriers in Cu/Si contact systems,”Appl. Surf. Sci., 190 (2002) 450.
    連結:
  15. [17] M. B. Takeyama, A. Noya, and K. Sakanishi, “Diffusion barrier properties of ZrN films in the Cu/Si contact systems,”J. Vac. Sci. Technol. B, 18 (2000) 1333.
    連結:
  16. [18] M. Takeyama, S. Kagomi, A. Noya, and K. Sakanishi, “Application of amorphous Cu-Zr binary alloy as a diffusion barrier in Cu/Si contact systems,”J. Appl. Phys., 80 (1996) 569.
    連結:
  17. [19] K. Schwarz, A. R. Williams, J. J. Cuomo, and J. H. E. Harper, “Zirconium nitride-a new material for Josephoson junctions,”Phys. Rev. B, 32 (1985) 8312.
    連結:
  18. [20] H. N. Al-shareef, X. Chen, D. J. Lichtenwalner, and A. I. Kingon,“Analysis of the oxidation kinetics and barrier layer properties of ZrN and Pt/Ru thin films for DRAM applications,”Thin Solid Films, 280 (1996) 265.
    連結:
  19. [21] B. Su, and K. L. Choy, “Structure and growth characteristics of BaZrO3 films produced using an electrostatic assisted aerosol-gel deposition method,”J. Mater. Chem., 9 (1999) 1629.
    連結:
  20. [22] J. Shi, J. E. Berger, and X. S. Ling, “Growth of YBa2Cu3O7-crystals with BaZrO3-coated alumina crucible,”Physica C, 301 (1998) 215.
    連結:
  21. [23] Y. Kitano, T. Matsui, N. Fujimura, K. Morii, and T. Ito, “Thin film crystal growth of BaZrO3 at low oxygen partial pressure,”J. Cryst. Growth., 243 (2002) 164.
    連結:
  22. [24] M. E. Pilleux, C.R. Grahmann, V. M. Fuenzalida, “Hydrothermal ABO3 ceramic thin films,”Appl. Surf. Sci., 65 (1993) 283.
    連結:
  23. [25] V. M. Fuenzalida, and M. E. Pilleux, “Hydrothermally grown BaZrO3 films on zirconium metal: microstructure, x-ray photoelectron spectroscopy, and Auger electron spectroscopy depth profiling,”J. Mater. Res., 10 (1995) 2749.
    連結:
  24. [26] K. Kajiyoshi, K. Yanagisawa, and M. Yoshimura, “Hydrothermal and electrochemical growth of complex oxide thin films for electronic devices,”J. Eur. Ceram. Soc., 26 (2006) 605.
    連結:
  25. [27] K. Kajiyoshi, and K. Yanagisawa, “Preparation of complex oxide thin films under hydrothermal and hydrothermal-electrochemical conditions,”J. Mater. Sci., 41 (2006) 1535.
    連結:
  26. [28] M. Paranthaman, S. S. Shoup, D. B. Beach, R. K. Willams, and E. D. Specht,“Epitaxial growth of BaZrO3 films on single crystal oxide substrates using sol-gel alkoxide precursors,” Mater. Res. Bull., 32 (1997) 1697.
    連結:
  27. [30] Y.-C. Chieh, C.-C. Yu, and F.-H. Lu,“Epitaxial growth of BaTiO3 films on TiN/Si substrates by a hydrothermal-galvanic couple method,”Appl. Phy. Lett., 90 (2007) 032904.
    連結:
  28. [31] Hugh O. Pierson, Handbook of refractory carbides and nitrides: properties, characteristics, processing and applications. Park Ridge, Noyes Publications, New York, (1996) 163-247.
    連結:
  29. [32] S. Yamanaka, M. Fujkane, T. Hamaguchi, H. Muta, T. Oyama, T. Matsuda, and K. Kurosaki, “Thermophysical properties of BaZrO3 and BaCeO3,”J. Alloys Comp., 359 (2003) 109.
    連結:
  30. [33] T. R. N. Kutty, R. Vivekanandan, and S. Philip, “Precipitation of ultrafine powders of zirconia polymorphs and their conversion to MZrO3 (M=Ba, Sr, Ca) by the hydrothermal method,”J. Mater. Sci., 25 (1990) 3649.
    連結:
  31. [34] S. Komarneni, Q. Li, K. M. Stefansson, and R. Roy, “Microwave-hydrothermal processing for synthesis of electroceramic powders,”Mater. Res. Soc., 8 (1993) 3176.
    連結:
  32. [35] P. P. Phulé and D. C. Grundy, “Pathways for the low temperature synthesis of nano-sized crystalline barium zirconate,”Mater. Sci. and Eng. B, 23 (1994) 29.
    連結:
  33. [36] W. Zheng, C. Liu, Y. Yue, and W. Pang, “Hydrothermal synthesis and characterization of BaZr1-xMxO3-α (M=Al, Ga, In, x≦0.2.0) series oxides” Mater. Lett., 30 (1997) 93.
    連結:
  34. [37] A. Dias, and V. S. T. Ciminelli, “Electroceramic materials of tailored phase and morphology by hydrothermal technology,”Chem. Mater., 15 (2003) 1344.
    連結:
  35. [38] Z. Lu, Y. Tang, L. Chen, and Y. Li, “Shape-controlled synthesis and characterization of BaZrO3 microcrystals,”J. Cryst. Growth, 266 (2004) 539.
    連結:
  36. [44] G. B. Harris, “Quantitative measurement of preferred orientation in rolled uranium,” Phil. Mag., 43 (1952) 113.
    連結:
  37. [45] M. A. Quevedo-Lopez, M. El-Bouanani, R. M. Wallace, and B. E. Gnade, “Wet chemical etching studies of Zr and Hf-silicate gate dielectrics,” J. Vac. Sci. Technol. A, 20 (2002) 1891.
    連結:
  38. [46] J. Jiang, R. Zhai, and X. Bao, “Electrocatalytic properties of Cu–Zr amorphous alloy towards the electrochemical hydrogenation of nitrobenzene,”J. Alloys Comp., 354 (2003) 248.
    連結:
  39. [47] J. A. Thornton, “Influence of apparatus geometry and deposition conditions on structure and topography of thick sputtered coatings,”J. Vac. Sci. Technol., 11 (1974) 666.
    連結:
  40. [50] S. Yamanaka, T. Hamaguchi, T. Oyama, T. Matsuda, S.-ichi Kobayashi, and K. Kurosaki, “Heat capacities and thermal conductivities of perovskite type BaZrO3 and BaCeO3,”J. Alloys Comp., 359 (2003) 1.
    連結:
  41. [51] H. Yanagisawa, S. Shinkai, K. Sasaki, Y. Abe, A. Sakai, and S. Zaima,“Epitaxial growth of (001) ZrN thin films on (001) Si by low temperature process,” Jpn. J. Appl. Phys., 44 ( 2005 ) 343.
    連結:
  42. [52] H. Yanagisawa, S. Shinkai, K. Sasaki, J. Sakai, J. Sakurai, Y. Abe, A. Sakai, and S. Zaima,“Epitaxial growth of (111) ZrN thin films on (111) Si substrate by reactive sputtering and their surface morphologies,” J. Cryst. Growth, 297 (2006) 80.
    連結:
  43. [53] N. Farkas, G. Zhang, E. A. Evans, R. D. Ramsier, and J. A. Dagata,“Nanoscale oxidation of zirconium surfaces: kinetics and mechanisms,”J. Vac. Sci. Technol., A 21 (2003) 1188.
    連結:
  44. [54] N. Farkas, G. Zhang, K. M. Donnelly, E. A. Evans, R. D. Ramsier, and J. A. Dagata,“The role of subsurface oxygen in the local oxidation of zirconium and zirconium nitride thin films,” Thin Solid Films, 447 (2004) 468.
    連結:
  45. [56] C. F. Windisch, J. W. Virden, S. H. Elder, J. Liu, and M. H. Engelhard,“Electrochemistry of TiN in 6 M KOH soultion,”J. Electrochem. Soc., 145 ( 1998 ) 1211.
    連結:
  46. [57] A. J. Bard and L. R. Faulkner, Electrochemical Methods, Fundamentals and Applications, John Wiley&Sons, New York, (1980) 205.
    連結:
  47. [11] 汪建民,陶瓷技術手冊 (下),中華民國粉末冶金協會,第二十三章:氮化物 (黃肇瑞),第777-804頁,民國八十三年。
  48. [14] R. J. Rodríguez, J. A. García, A. Medrano, M. Rico, R. Sánchez, R. Martínez, C. Labrugère, M. Lahaye, and A. Guette,“Tribological behaviour of hard coatings deposited by arc-evaporation PVD,”Vacuum, 67 (2002) 559.
  49. [29] 余錦智,“以低溫水熱法及化學電池作用於氮化鈦膜上製備鈦酸鋇膜之研究” 國立中興大學材料工程所碩士論文,2005年。
  50. [39] M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solution. National Association of Corrosion Emgineers, (1974) 263.
  51. [40] E. Hummel, Electronic Properties of Materials. 3rd ed. Springer-Verlag, New York, (2001) 186.
  52. [41] Takuro Ikeda, Fundamentals of piezoelectricity, Oxford University Press, New York, (1990) 135.
  53. [42] 田福助,電化學-基本原理與應用,五洲出版社,第三章:可逆性電極之電位,第53-55頁,民國八十三年。
  54. [43] 林振華,充電式鋰離電池電池材料與應用,全華科技圖書,第二章:二次鋰離子電池的開發歷史,第2-1~2-7頁,民國90年。
  55. [48] 鄭柏左,色彩理論與數位影像,新文京開發出版社,第五章:色彩的視覺理論,第93-110頁,民93年。
  56. [49] B. D. Cullity and S.R. Stock, Elements of X-Ray Diffraction. Prentice-Hall, New York, (2001) 367.
  57. [55] 文國光,電池電化學,電子工業出版社,第二章:電池與電解池基本知識,第31-75頁,民國84年。
Times Cited
  1. 吳効泓(2015)。以水熱-化學電池法於ZrN/Si上製備BaZrO3薄膜及成長機制分析。中興大學材料科學與工程學系所學位論文。2015。1-95。 
  2. 趙玲夙(2009)。以低溫水熱-化學電池法於鍍鈦膜矽基材上製備具有生物活性之奈米NaHTi3O7薄膜研究。中興大學材料科學與工程學系所學位論文。2009。1-105。