Title

電化學阻抗頻譜在染料敏化太陽能電池之應用

Translated Titles

Applications of Eletrochemical Impedance Spectroscopy Study in Dye-Sensitized Solar Cells

Authors

謝逢展

Key Words

染料敏化太陽能電池 ; 交流阻抗頻譜 ; DSSC ; Impedance

PublicationName

中興大學物理學系所學位論文

Volume or Term/Year and Month of Publication

2010年

Academic Degree Category

碩士

Advisor

李明威

Content Language

繁體中文

Chinese Abstract

本研究以二氧化鈦奈米顆粒、氧化鋅奈米顆粒和氧化鋅奈米柱不同材料及結構的光電極製作而成的染料敏化太陽能電池進行交流阻抗圖譜的分析。因為目前所使用的染料和電解液都是針對二氧化鈦所開發的,雖然氧化鋅具有比二氧化鈦更有好的光電性質,但目前氧化鋅染料敏化太陽能電池的轉換效率仍無法超越二氧化鈦。由交流阻抗圖譜分析可得知如果要有良好的轉換效率則太陽能電池必定具有較低的阻抗。隨著增加氧化物半導體與電解液的接觸面積可讓阻抗降低,但是同時也增加被激發的光電子發生再結合的機率使得光電流密度不能有效地提升。使用氧化鋅奈米柱結構提供較短的路徑來傳遞光電子可得到較氧化鋅奈米顆粒更高的光電流密度。由開路電壓衰減量測也可得到光電子在氧化鋅奈米柱中具有較長的生命週期,也代表有較多的光電子能夠傳遞到外電路。透過交流阻抗圖譜分析有助於我們了解太陽能電池內部運作的機制,對於提升太陽能電池的轉換效率提供有益的資訊

English Abstract

In this study, dye-sensitized solar cells (DSSCs) were built with three tyepes of photoelectrodes consisting of TiO2 nanoparticles, ZnO nanoparticles and ZnO nanorods. Electrochemical impedance spectroscopy was used to investigate the electrical response of the cells under excitation with an alternating current (AC) voltage source was measured and analyzed in a wide frequency range (10 mHz-100kHz). It is found that the power conversion efficiency increases with a decrease in the impedance at the TiO2/electrolyte interface. In comparison to ZnO nanoparticle films, ZnO nanorods are of single-crystalline quality with a low defect density. The direct conduction pathways make electron transport much faster in ZnO nanorods, resulting in higher photocurrent densities. Open-circuit voltage- decay measurements revealed that the photoelectron lifetime in ZnO nanorod is longer than that in ZnO nanoparticle.

Topic Category 基礎與應用科學 > 物理
理學院 > 物理學系所
Reference
  1. [1] M. Grätzel, Nature 414, 338−344 (2001).
    連結:
  2. [2] L. Han, N. Koide, Appl. Phys. Lett. 84, 2433-2435 (2004).
    連結:
  3. J. Am. Chem. Soc 127,16835(2005)
    連結:
  4. [7] C.A. Gueymard, D. Myers, K. Emery, Solar Energy 73, 443-467 (2002).
    連結:
  5. [8] J. Bisquert, J. Phys. Chem. B 106 , 325-333 (2002).
    連結:
  6. [9] 陳佳靜,氧化鋅奈米顆粒與奈米柱於染料敏化太陽能電池之應用,國立中興大學物理所 (2007)。
    連結:
  7. [10] S. Ito, M. Grätzel, Adv. Mater. 18, 1202-1205 (2006).
    連結:
  8. [3] M. Grätzel, Inorganic Chemistry 44, 6841−6851 (2005).
  9. [4] F. Claeyssens, C. L. Freeman, N. L. Allan, Y. Sun, M. N. R. Ashfolda and J. H. Harding, J. Mater. Chem. 15 139–148 (2005).
  10. [5] 林義成,“Solar Cell Introduction”彰化師範大學機電系/顯示所(2005)。
  11. [6] M. K. Nazeeruddin, F. de Angelis, S. Fantacci, A. Selloni,
  12. G. Viscardi, P. Liska, S. Ito, B. Takeru, M. Grätzel,
  13. A. Zaban, M. Greenshtein, J. Bisquert, CHEMPHYSCHEM 4, 859 (2003).