Title

微振動馬達之設計與分析

Translated Titles

Design and Analysis of a Microvibromotor

DOI

10.6845/NCHU.2007.00487

Authors

陳建華

Key Words

微振動馬達 ; 微組裝 ; 微致動器 ; Microvibromotor ; microassembly ; microactuators

PublicationName

中興大學精密工程學系所學位論文

Volume or Term/Year and Month of Publication

2007年

Academic Degree Category

碩士

Advisor

王東安

Content Language

繁體中文

Chinese Abstract

本研究設計一個應用於微組裝上之微振動馬達。此微振動馬達主要由滑塊及兩組衝擊器所組成。線性滑塊藉著衝擊器振動之撞擊而能往前或往後移動,藉著壓電器振動,可選擇性的共振衝擊器。微振動馬達的數學模型被建立,並使用 Matlab simulink 進行數值模擬,且探討外部驅動頻率及間距對系統之影響。所得之結果可應用於微振動馬達的設計,所設計的線性微振動馬達能克服黏著力並獲得較佳的傳遞速度。最後提出一個微振動馬達的製程方式。

English Abstract

Design and analysis of a microvibromotor for microassembly is investigated here. The microvibromotor is composed of a main slider and two pairs of impacters. The forward and backwark motion of the slider is controlled by vibratory impacts exerted by the impacters. The impacters are selectively resonated by a piezoelectric vibrator. An analytical model of the microvibromotor is derived, its equation of motion is numerically solved by using Matlab simulink. The influences of frequencies of the external vibration and the gap between the slider and the impactors are discussed. Results of the simulation are applied to the design of the microvibromotor, to overcome the adhesion between the slider and the substrate and to obtain larger speed of the slider. Finally a fabrication process of the microvibromotor is proposed.

Topic Category 工學院 > 精密工程學系所
工程學 > 工程學總論
Reference
  1. Baltzer, M., Kraus, T., and Obermeier, T., 1997. “A
    連結:
  2. Proceedings of International Conference on Solid-State
    連結:
  3. Sensors and Actuators, Chicago, IL, pp. 781–784.
    連結:
  4. “Viscous damping model for laterally oscillating
    連結:
  5. microvibromotor for positioning optical components,”
    連結:
  6. Journal of Microelectromechanical Systems, vol. 5, pp.
    連結:
  7. 159–165.
    連結:
  8. Conference on Intelligent Robots and Systems, vol. 2,
    連結:
  9. Microelectromechanical Systems, vol. 5, pp. 72–77.
    連結:
  10. 2003. “Design and characterization of a micromachined
    連結:
  11. inchworm motor with thermoelastic linkage actuators,”
    連結:
  12. Sensors and Actuators A, vol. 103, pp. 143–149.
    連結:
  13. ASME Winter Annual Meeting, Dallas, TX, 1990, pp. 51–67.
    連結:
  14. Micromachined Microoptical Elements and System,”
    連結:
  15. Proceedings of the IEEE, vol. 86, no. 8, pp. 1705-1720.
    連結:
  16. electrothermal vibromotor for silicon optical bench
    連結:
  17. 237–243.
    連結:
  18. Y. B., 2001. “Bent-beam electrothermal actuators: II.
    連結:
  19. Linear and rotary microengines,” Journal of
    連結:
  20. “Automated assembly of flip-up micromirrors,” Sensors
    連結:
  21. “Externally resonated linear microvibromotor for
    連結:
  22. Tas, N. R., Sonnenberg, T., Molenaar, R., and Elwenspoek,
    連結:
  23. laterally driven electrostatic motors employing walking
    連結:
  24. mask, large force, and large displacement electrostatic
    連結:
  25. linear inchworm motors,” Journal of
    連結:
  26. 2004. “Modelling and simulation methodology for impact
    連結:
  27. microactuators,” Journal of Micromechanics and
    連結:
  28. linear stepping actuator in surface micromachining
  29. technology for low voltages and large displacements;”
  30. Cho, Y.-H., Pisano, A. P., and Howe, R. T., 1994.
  31. microstructures,” Journal of Microelectromechanical
  32. Systems, vol. 3, pp. 81–87.
  33. Daneman, M. J., Tien, N. C., Solgaard, O., Pisano, A. P.,
  34. Lau, K. Y., and Muller, R. S., 1996. “Linear
  35. Fearing, R. S., 1995. “Survey of sticking effects for
  36. micro parts handling,” Proceedings of International
  37. pp. 212–217.
  38. Keller, C. G., and Howe, R. T., 1997. “Hexsil tweezers
  39. for teleoperated microassembly,” Journal of
  40. Kwon, H. N., Jeong, S. H., Lee, S. K., and Lee, J. H.,
  41. Lee, A. P., and Pisano, A. P., 1990. “Repetitive impact
  42. testing of micro mechanical structures,” Proceedings of
  43. Muller, R. S., and Lau, K. Y., 1998. “Surface-
  44. Pai, M., and Tien, N. C., 2000. “Low voltage
  45. applications, “ Sensors and Actuators A, vol. 83, pp.
  46. Park, J.-S., Chu, L. L., Oliver, A. D., and Gianchandani,
  47. Microelectromechanical Systems, vol. 10, pp. 255–262.
  48. Reid, J. R., Bright, V. M., and Butler, J. T., 1998.
  49. and Actuators A, vol. 66, pp. 292–298.
  50. Saitou, K., Wang, D.-A., and Wou, S. J., 2000.
  51. microassembly,” Journal of Microelectromechanical
  52. Systems, vol. 9, no. 3, pp. 336-346.
  53. M., 2003. “Design, fabrication and testing of
  54. motion and mechanical leverage,“ Journal of
  55. Micromechanics and Microengineering, vol. 13, pp. n6–n15
  56. Yeh, R., Hollar, S., and Pister, K. S., 2002. “Single
  57. Microelectromechanical Systems, vol. 11, pp. 330–336.
  58. Zhao, X., Dankowicz, H., Reddy, C. K., and Nayfeh, A. H.,
  59. Microengineering, vol. 14, pp. 775 – 784.