Translated Titles

Synthesis and Morphology of Dumbbell Shaped Dendrimers





Key Words

啞鈴型 ; 規則樹枝狀高分子 ; 自組裝行為 ; dumbbell shaped ; dendrimer ; self-assembly



Volume or Term/Year and Month of Publication


Academic Degree Category




Content Language


Chinese Abstract

自組裝(self-assembly)行為是因結構之親疏水性、溶劑條件不同而產生的現象,其作用力包括:靜電作用(electrosatatic interactions)、氫鍵(hydrogen bonding)、凡得瓦力(van der Waals forces)和疏水效應(solvophobic effects)等。高分子自組裝材料多半以diblock copolymer和tribolck copolymer為主,其中也有導入樹枝狀高分子之結構,因為樹枝狀高分子具有獨特、精確和完美的奈米結構,以致於可應用在各個領域如:分子包覆及釋放、光電材料和藥物傳遞等。 樹枝狀高分子不僅提供一奈米結構之構築單元,更可利用代數作為自組裝行為之變因,本研究發展出具不同末端官能基及不同代數之啞鈴型樹枝狀高分子,實驗分成兩部份:(1)樹枝狀高分子:利用IDD (4-isocyanato-4’(3,3-dimethyl-2,4-dioxo-azetidino)diphenylmethane)為構築單元並經收歛的合成路徑發展至高代數。(2)製備dumbbell shaped dendrimer:利用市售親水性的Jeffamine ED-2003做為中間連接分子,與樹枝狀高分子進行開環加成反應。 為了探討系統的自組裝行為,實驗中藉由調控溶劑與水的比例和表面張力的測試,得知材料的臨界微胞濃度。材料在臨界微胞濃度下,透過AFM及TEM觀察材料的微胞型態,隨著樹枝狀高分子的導入及代數的增加,不僅分子內與分子間的作用力增加,也有效地提升微胞的穩定性;此外,實驗中更改變溶劑條件,證實分子於水溶液及有機溶劑中的排列情形。因此,本實驗成功製備出於特定條件下具自組裝行為之啞鈴型樹枝狀高分子。

English Abstract

The primary driving force responsible for the molecule arrangement was proposed to be the electrostatic interactions, hydrogen bonds, van der Waals forces, π-π stacking interactions and solvophobic effects. Self-assembling materials in the bulk state include liquid crystals, block copolymers, hydrogen-bonded complexes and precise control of molecular arrangements such as dendrimers. Dendritic strucutre is essential to obtain well-defined nanoscopic architectures with specific shape which are widely studied for their great potential as advanced functional materials in encapsulated systems, electro-optical areas, drug delivery, self-assembly systems, etc. Herein, we focus on a dumbbell shaped dendrimer system. The persuit of developing the dumbbell shapd dendrimers is approached in two steps:(1) dendrons: a building block, 4-isocyanato-4’(3,3-dimethyl-2,4-dioxo-azetidino)diphenylmethane(IDD) is selected to prepare two series of dendrons via a convergent route.(2)dumbbell shaped dendrimers: jeffamine ED-2003 is utilized as the coupling agent via selective ring-opening addition of azetidine-2,4-diones toward alphatic primary amines. To probe the self-assembly behavior, we utilized surface tension measurements to evaluate critical micelle concentrations. In addition, the morphology was characterized by atomic force microscopy (AFM) and transmission electron microscopy (TEM). By embedding different generations of dendrimers in the dumbbell shaped systems, the intermolecular or intramolecular interaction will would be enhanced because of the presence of interactions such as hydrogen bonding and van der Waals forces. The stability of micelles was further improved as higher generations of dendrons were incorporated. Moreover, ordered micelle morphologies were present in the water and organic solvents, respectively. Hence, these novel dumbbell shaped dendrimers with self-assembly behavior have been successfully developed in this work.

Topic Category 工學院 > 化學工程學系所
工程學 > 化學工業
  1. 1. Shimizu, T.; Masuda, M.; Minamikawa, H. Chem. Rev. 2005, 105, 1401.
  2. Huang, B. Prog. Polym. Sci. 2005, 30, 220.
  3. 3. Israelachivili, J. N. Intermolecular and Surface Forces; Academic
  4. 5. Yamamoto, K.; Takanashi, K. Polymer 2008, 49, 4033.
  5. 6. Darbre, T.; Reymond, J. L. Acc. Chem. Res. 2006, 39, 925.
  6. 7. Grayson, S. M.; Frechet, J. M. J. Chem. Rev. 2001, 101, 3819.
  7. Roeck, J.; Ryder, J.; Smith, P. Polym. J. 1985, 17, 117.
  8. 1985, 50, 2003.
  9. 1992, 25,31.
  10. trans. 1993, 2, 2381.
  11. M.; Turk, S.; Rader, H. J. Macromolecules 2004, 37, 4227.
  12. 13. Vassilieff, T. S. Dumbbell Shaped Dendrimers: Synthesis,
  13. Characterization and Applications in Assembling Silver Nanoparticles.
  14. 14. Yang, M.; Wang, W.; Yuan, F.; Zhang, X.; Li, J.; Liang, F.; He, B.;
  15. Minch, B.; Wegner, G. J. Am. Chem. Soc. 2005, 127, 15107.
  16. Chem. Soc. 2006, 128, 14760.
  17. 16. Vutukuri, D. R.; Basu, S.; Thayumanavan, S. J. Am. Chem. Soc. 2004,
  18. 17. Lindman, B.; Alexandridis, P. Amphiphilic Block Copolymers, 2000.
  19. 2004, 430, 764.
  20. 2007, 129, 11265.
  21. 20. Luman, N. R.; Grinstaff, M. W. Org. Lett. 2005, 7, 4863.
  22. 2001, 123, 1302.
  23. 23. Flory, P.J. J. Chem. Phys. 1943, 11, 512.
  24. 24. Stockmayer, W. H. J. Chem. Phys. 1944, 11, 45.
  25. 25. Buhleier, E.; Wehner, W.; V
  26. 2. Smith, D. K.; Hirst, A. R.; Love, C. S.; Hardy, J. G.; Brignell, S. V.;
  27. Press: New York, 1985.
  28. 4. Ambade, A. V.; Savariar, E. N.; Thayumanavan S. Mol. Pharm. 2005, 2 , 264.
  29. 8. Tomalia, D. A.; Baker, H.; Dewald, J; Hall, M.; Kallos, G.; Martin, S.;
  30. 9. Newkome, G. R.; Yao, Z.; Baker, G. R.; Gupta, V. K. J. Org. Chem.
  31. 10. Moorefield, C. N.; Newkome, G. R.; Baker, G. R. Aldrichimica Acta
  32. 11. Percec, V.; Heck, J. A.; Tomazos, D.; Ungar, G. J. Chem. Soc., Perkin
  33. 12. Cho, B. K.; Jain, A.; Nieberle, J.; Mahajan, S.; Wiesner, U.; Gruner, S.
  34. 2007.
  35. 15. Chen, Y.; Ambade, A. V.; Vutukuri, D. R.; Thayumanavan, S. J. Am.
  36. 126, 15636.
  37. 18. Percec, V.; Dulcey, A. E.; Balagurusamy, V. S. K.; Miura, Y.;
  38. Smidrkal, J.; Peterca, M.; Nummelin, S.; Edlund, U.; Hudson, S, D,;
  39. Heiney, P. A.; Duan, H.; Magonov, S. N.; Vinogradov, S. A. Nature
  40. 19. Percec, V.; Won, B. C.; Peterca, M.; Heiney, P. A. J. Am. Chem. Soc.
  41. 21. Hawker, C. J.; Wooley, K. L.; Frechet, J. M. J. J. Chem. Soc., Perkin
  42. Trans. 1 1993, 12, 1287.
  43. 22. Percec, V.; Cho, W.; Ungar, G.; Yeardley, D. J. P. J. Am. Chem. Soc.