Title

新穎的奈米銅粒子合成方法及其在矽通孔晶種層催化觸媒上的應用

Translated Titles

A Novel Synthesis Method of Cu Nanoparticles and Their Applications as Catalyst for Seed Layer Deposition on Through Silicon Via

DOI

10.6845/NCHU.2011.00617

Authors

張佑祥

Key Words

金屬奈米粒子 ; 矽通孔 ; 無電鍍 ; 化學接枝 ; 三維晶片 ; Metal Nanoparticles ; TSV ; Electroless Deposition ; Chemical Grafting ; 3D IC

PublicationName

中興大學化學工程學系所學位論文

Volume or Term/Year and Month of Publication

2011年

Academic Degree Category

碩士

Advisor

竇維平

Content Language

繁體中文

Chinese Abstract

近年來,隨著科技發展的進步,電子瓹品也朝向高密度、薄型化、可攜帶性與多功能的方向發展,而三維的積體電路堆疊技術勢必是下一代發展的重點。矽通孔在三為晶片堆疊技術中扮演最重要的角色。在矽通孔利用電鍍技術形成前,矽通孔需要一的良好的阻障層,如:鈦/氮化鈦或酰/氮化酰,以及晶種層在介電層的上方。截至目前為止,一般製備阻障層與晶種層的方式是以化學氣相沉積法和物理氣相沉積法為主,然而這些方法均有致命的缺點,一在高深寬比的矽通孔孔洞中其階梯覆蓋率低,二以量瓹的角度而言,其成本太昂貴了。因此,吾人提出以無電電鍍的方式沉積阻障層與晶種層,也就是說利用溼式製程來製作。 本研究為了降低矽通孔的製程成本,吾人利用新穎的奈米銅粒子合成方法並將其當作觸媒應用在矽通孔晶種層的製程上。因此,本研究可分為兩個部分,第一部份是奈米銅粒子的合成,第二部分為應用在矽通孔晶種層的製程上。第一部分,吾人利用新穎的方法製備奈米銅粒子,此方法來自聚亞醯胺基材的金屬化製程,所以其程序包含氫氧化鉀開環處理使其變成聚亞醯胺酸,離子交換將銅二價離子交換到聚亞醯胺酸基板中,最後再利用還原劑二甲基胺硼烷含少許添加劑還原出奈米銅粒子。此方法的重點在於添加劑的部分,此添加劑必頇為硫醇類的化學物質。第二部分,吾人提出一個新穎的奈米粒子接枝方法將奈米銅粒子接枝在鈷鎢磷合金基材的阻障層上,再接枝奈米銅粒子後利用無電鍍的方式製備出晶種層。然而,此接枝的方法包含正負電吸引方式以及醯胺鍵的方式等,而奈米銅粒子所扮演的角色是觸媒,目的是催化晶種層的生成。

English Abstract

Because the development of science and technology continuously progresses, electronic products tend toward high density, thinness, portable and Multi-function. Therefore, 3D IC stacking technology will be carried out in next generation. Through Silicon Via (TSV) plays an important role in 3D IC stacking technology. Before TSV formation by electroplating, TSV must have a good barrier layer, such as Ti/TiN or Ta/TaN, and a seed layer coated on isolation layer (SiO2). So far, typical procedure that forms barrier layer and seed layer is CVD or PVD. But these processes have two fatal problems. One is poor step coverage and conformality in the high-aspect-ratio via and trench; the other is high cost for mass production. For those reasons, we propose a novel procedure for barrier layer and seed layer formation by electroless deposition. In other words we choose wet process to form barrier layer and seed layer. In this study we developed a novel synthesis method of copper nanoparticles (CNPs) as catalyst for TSV seed layer formation. Therefore, this study is separated into two parts. One is CNPs formation; the other is to form seed layer by copper electroless deposition (Cu ELD) using the CNPs as catalysts. First part, we synthesized CNPs by a novel method. This method is obtained from copper metallization on polyimide (PI) film, so that the procedure includes KOH treatment to form poly (amic acid) (PAA), ion exchange to form Cu2+ doped PAA, doped Cu2+ reduction by aqueous Dimethylamine Borane (DMAB) with a trace amount of additive to form CNPs in the DMAB solution. The key point is the additive which must have mercapto group. Second part, we proposed a novel method for CNPs grafting on barrier layer (Co-W-P). After CNPs grafting, Cu seed layer was formed by Cu ELD. The grafting strategies include positive and negative charges attraction, and peptide bonding etc. The role of copper nanoparticles is catalyst to catalyze Cu ELD for seed layer formation.

Topic Category 工學院 > 化學工程學系所
工程學 > 化學工業
Reference
  1. [5] 郭清癸,黃俊傑,牟中原,“金屬奈米粒子的製造”,物理雙月刊,第廿三卷六期,民國90年。
    連結:
  2. [6] 陳信甫,“銅奈米粒子探討:硫醇吸附的影響與金銅合金奈米空球的製備”,國立成功大學化學系碩士論文,民國92年。
    連結:
  3. [7] A. P. Alivisatos, “Semiconductor Clusters, Nanocrystals, and Quantum Dots”, Science 1996, 271, 993.
    連結:
  4. [8] 邱國斌,蔡定帄,“金屬表面電漿簡介”,物理雙月刊,第廿八卷二期,民國95年。
    連結:
  5. [9] M. Moskovits, “Surface-Enhanced Spectroscopy”, Rev. Mod. Phys. 1985, 57, 783.
    連結:
  6. [10] 吳民耀,劉威志,“表面電漿子理論與模擬”,物理雙月刊,第廿八卷二期,民國95年。
    連結:
  7. [11] C. F. Bohren, D.R. Huffman, “Absorption and Scattering of Light by Small Particles”, Wiley-Interscience 1988.
    連結:
  8. [12] H. B. Weiser, “Inorganic Colloid Chemistry-Volume:The Colloidal Elements”, Braunworth & Co. 1933.
    連結:
  9. [14] D. G. Eadon, “J. A. Creighton” J. Chem. Soc. Farady. Trans. 1991, 87, 3881.
    連結:
  10. [15] H. H. Huang, G. Q. Yan, Y. M. Kek, C. H. Chew, G. Q. Xu, P. S. Oh, S. H. Tang“Synthesis, Characterization, and Nonlinear Optical Properties of Copper Nanoparticles”, Langmuir 1997, 13, 172.
    連結:
  11. [16] I. Lisiecki, M. P. Pileni, “Synthesis of Copper Metallic Clusters Using Reverse Micelles as Microreactors”, J. Am. Chem. Soc. 1993, 115, 3887.
    連結:
  12. [17] S. S. Joshi, S. F. Patil, V. Iver, S. Mahumuni, “Radiation Induced Synthesis and Characterization of Copper Nanoparticles”, NanoStruct. Marter. 1998, 10, 1135.
    連結:
  13. [18] M. S. Yeh, Y. S. Yang, Y. P. Lee, H. F. Lee, Y. H. Yeh C. S. Yeh, “Formation and Characteristics of Cu Colloids form CuO Power by Laser Irradiation in 2-Propanol”, J. Phys. Chem. B 1999, 103, 6851.
    連結:
  14. [19] N. Arul Dhas, C. Paul Raj, “Synthesis, Characterization, and Properties of Metallic Copper Nanoparticles”, A. Gedanken, Chem. Mater. 1998, 10, 1446.
    連結:
  15. [21] I. Haas, S. Shanmugan, A. Gedanken, “Pulsed Sonoelectrochemical Synthesis of Size-Controlled Copper Nanoparticles Stabilized by Poly(N-vinylpyrrolidone)”, J. Phys. Chem. B 2006, 110, 16947.
    連結:
  16. [22] I. Haas, S. Shanmugan, A. Gedanken, “Synthesis of Copper Dendrite Nanoparticles by a Sonoelectrochemical Method”, Chem. Eur. J. 2008, 14, 4696.
    連結:
  17. [23] H. Hirai, H. Wakabayashi, M. Komiyama, “Preparation of Polymer-Protected Colloidal Dispersions of Copper”, Bull. Chem. Soc. Jpn.1986, 59, 367.
    連結:
  18. [24] A. C. Curtis, D. G. Duff, P. P. Edwards, D. A. Jefferson, B. F. G. Johnson, A. I. Kirkland, A. S. Wallace, “Preparation and Structural Characterization of an Unprotected Copper Sol”, J. Phys. Chem. 1988, 92, 2270.
    連結:
  19. [25] P. N. Floriano, C. O. Noble, Ⅳ, J. M. Schoonmaker, E. D. Poliakoff , R. L. McCaarley, “Cu(0) Nanoparticles Derived from Poly(propylene imide) Dendrimer Complexes of Cu(Ⅱ)”, J. Am. Chem. Soc. 2001, 123, 10545.
    連結:
  20. [26] S. Kapoor, R. Joshi, T. Mukherjee, “Influence of I- Anions on the Formation and Stabilization of Copper Nanoparticles”, Chem. Phys. Lett. 2002, 354, 433.
    連結:
  21. [27] Y. V. Bokshits, G. P. Shevchenko, A. N. Ponyavina, S. K. Rakhmanov, “Formation of Silver and Copper Nanoparticles upon the Reduction of Their Poorly Soluble Precursors in Aqueous Solution”, Colloid J. 2004, 66, 581.
    連結:
  22. [28] P. J. G. Goulet, R. B. Lennox, “New Insights into Brust-Schiffrin Metal Nanoparticle Synthesis”, J. Am. Chem. Soc. Chem. Commun. 2010, 132, 9582.
    連結:
  23. [29] P. Kanninen, C. Johans, J. Merta, K. Kontturi, “Influence of Iigand Structure on the Stability and Oxidation of Copper Nanoparticles”, J. Am. Chem. Soc. 2008, 318, 88.
    連結:
  24. [30] H. T. Zhu, C. Y. Zhang, Y. S. Lin, “Rapid Synthesis of Copper Nanoparticles by Sodium Hypophospite in Ethylene Glycol under Microwave Irradiation”, J. Crystal Growth 2004, 270, 722.
    連結:
  25. [31] S. Giuffrida, L. L. Costanzo, G. Ventimiglia, C. Bongiorno, “Photochemical Synthesis of Copper Nanoparticles Incorporated in Poly(vinyl pyrrolidone)”, J. Nanopart. Res. 2008, 10, 1183.
    連結:
  26. [32] K. J. Ziegler, R. C. Doty, K. P. Johnston, B. A. Korgel, “Synthesis of Organic Monolayer-Stabilized Copper Nanocrystals in Supercritical Water”, J. Am. Chem. Soc. 2001, 123, 7797.
    連結:
  27. [33] S. Y. Xie, Z. J. Ma, C. F. Wang, S. C. Lin, Z. Y. Jiang, R. B. Huang, L. S. Zheng, “Preparation and Self-assembly of Copper Nanoparticles Via Discharge of Copper Rod Electrodes in a Surfactant Solution: a Combination of Physical and Chemical Processes”, J. Solid-state Chem. 2004, 177, 3734.
    連結:
  28. [34] P. K. Khanna, T. S. Kale, M. Shaikh, N. K. Rao, C. V. V. Satyanarayana, “Synthesis of Oleic Acid Capped Copper Nano-particles via Reduction of Copper Salt by SFS”, Mater. Chem. Phys. 2008, 110, 21.
    連結:
  29. [35] P. Christian, M. Bromfield, “Preparation of Small Silver, Gold and Copper Nanoparticles Which Disperse in Both Polar and Non-polar Solvents”, J. Mater. Chem. 2010, 20, 1135.
    連結:
  30. [36] Md. Abdulla-Al-Mamun, Y. Kusumoto, M. Muruganandhum, “Simple New Synthesis of Copper Nanoparticles in Water/Acetonitrile Mixed Solvent and Their Characterization”, Mater. Lett. 2009, 63, 2007.
    連結:
  31. [37] P. K. Khanna, P. More, J. Jawalkar, Y. Patil, N. K. Rao, “Synthesis of Hydrophilic Copper Nanoparticles:Effect of Reaction Temperature”, J. Nanopart. Res. 2009, 11, 793.
    連結:
  32. [39] R. Prucek, L. Kvìtek, A. Panáćek, L. Vančurová, J. Soukupová, D. Jančík, R. Zbořil, “Polyacrylate-Assisted Synthesis of Stable Copper Nanoparticles and Copper(I) Oxide Nanocubes with High Catalytic Efficiency”, J. Mater. Chem. 2009, 19, 8463.
    連結:
  33. [40] Y. Wang, T. Asefa, “Poly(allylamine)-Stabilized Colloidal Copper Nanoparticles: Synthesis, Morphology, and Their Surface-Enhanced Raman Scattering Properties”, Langmuir 2010, 26, 7469.
    連結:
  34. [41] M. P. Pileni, I. Lisiecki, “Nanometer Metallic Copper Particle Synthesis in Reverse Micelles”, Colloids Surf. A 1993, 80, 63.
    連結:
  35. [42] S. Qin, J. Dong, G. Chen, “Preparation of Cu Nanoparticles from Water-in-Oil Microemulsuons”, J. Colloid Inter. Sci. 1999, 216, 230.
    連結:
  36. [47] L. E. Stephans, A. Myles, R. R. Thomas, “Kinetics of Alkaline Hydrolysis of a Polyimide Surface”, Langmuir 2000, 16, 4706.
    連結:
  37. [48] R. R. Thomas, “Wetting Kinetics Study of Modified Polyimide Surfaces Containing Ionizable Functional Groups”, Langmuir 2003, 19, 5763.
    連結:
  38. [49] K. Akamatsu, H. Nawafune, K. Akamatsu, H. Nawafune, “Copper/Polyimide Heterojunctions:Controlling Interfacial Structures Through an Additive-Based, All-Wet Chemical Process Using Ion-Doped Precursors”, Adv. Funct. Mater. 2007, 7, 889.
    連結:
  39. [50] W. P. Dow, G. L. Liao, S. E. Huang, S. W. Chen, “Modification of Cu nanoparticles with a disulfide for polyimide metallization”, J. Mater. Chem. 2010, 20, 3600.
    連結:
  40. [51] S. Ikeda, K. Akamatsu, H. Nawafune, T. Nishino, S. Deki“Formation and Growth of Copper Nanoparticles from Ion-Doped Precursor Polyimide Layers”, J. Phys. Chem. B 2004, 108, 15599.
    連結:
  41. [52] S. Tomita, P. E. Jonsson, K. Akamatsu, H. Nawafune, H. Takayama, “Controlled Magnetic Properties of Ni Nanoparticles Embedded in Polyimide Films”, Phys. Rev. B 2007, 76, 174432.
    連結:
  42. [53] Y. Li, Q. Lu, X. Qian, Z. Zhu, J. Yin, “Preparation of Surface Bound Silver Nanoparticles on Polyimide by Surface Modification Method and Its Application on Electroless Metal Deposition”, Appl. Surf. Sci. 2004, 233, 299.
    連結:
  43. [54] J. D. Nam, S. S. Yoon, D. O. Kim, S. C. Park, Y. K. Lee, H. Y. Chae, S .B. Jung, “Direct Metallization of Gold Patterns on Polyimide Substrate by Microcontact Printing and Selective Surface Modification”, Microelectron. Eng. 2008, 85, 136.
    連結:
  44. [55] S. We, S. Meng, “Preparation of Ultrafine Silver Powder Using Ascorbic Acid as Reducing Agent and Its Application in MLCI”, Mater. Chem. Phys. 2005, 89, 423.
    連結:
  45. [56] Y. Kong, J. Shao, W. Wang, Z. Chen, H. Chu, “Surface Modification and Metallization of Polyimide Using Gold Colloids as a Seed Layer”, J. Appl. Polym. Sci. 2008, 111, 4.
    連結:
  46. [57] S. Ikeda, K. Akamatsu, H. Nawafune, T. Nishino, S. Deki, “Formation and Growth of Copper Nanoparticles from Ion-Doped Precursor Polyimide Layers”, J. Phys. Chem. B 2004, 108, 15599.
    連結:
  47. [58] Z. Wu, S. Yang, D. Wu, S. Qi, G. Cui, R. Jin, “Fabrication of Highly Reflective and Conductive Double-Surface-Silvered Layers Embedded on Polymeric Films through All-Wet Process at Room Temperature”, J. Phys. Chem. 2009, 113, 9694.
    連結:
  48. [59] K. Akamatsu, S. Ikeda, H. Nawafune, “Site-Selective Direct Silver Metallization on Surface-Modified Polyimide Layers”, Langmuir 2003, 19, 10366.
    連結:
  49. [60] D. Chen, Q. Lu, Y. Zhao, “Laser-Induced Site-Selective Silver Seeding on Polyimide for Electroless Copper Plating”, Appl. Surf. Sci. 2006, 253, 1573.
    連結:
  50. [66] M. Paunovic, “Electrochemical Aspects of Electroless Deposition of Metals”, Plating 1968, 55, 1161.
    連結:
  51. [68] Ferrier, R. Donald, “Electroless Copper Deposition Solutions with Hypophosphite Reducing Agent”, U.S. Patent 4 1982,325, 990.
    連結:
  52. [69] A. Hung, “Electroless Copper Deposition with Hypophosphite as Reducing Agent”, Plat. Surf. Finish. 1988, 1, 62.
    連結:
  53. [70] Y. Shacham-Diamand, S. Lopatin, “Integrated Electroless Metallization for ULSI”, Electrochim. Acta 1999, 44, 3639.
    連結:
  54. [71] I. Langmuir, “The Constitution and Fundamental Properyies of Solids and Liquids. II. Liquids”, J. Am. Chem. Soc. 1917, 39, 1848.
    連結:
  55. [72] K. B. Blodgett, “Films Built by Depositing Successive Monomolecular Layers on a Solid Surface”, J. Am. Chem. Soc. 1938, 57, 1007.
    連結:
  56. [74] A. Ulman, “Formation and Structure of Self-Assembles Monolayers”, Chem. Rev. 1996, 96, 1533.
    連結:
  57. [75] R. G. Nuzzo, D. L. Allara, “Adsorption of Bifunctional Organic Disulfides on Gold Surfaces”, J. Am. Chem. Soc. 1983, 105, 4481.
    連結:
  58. [76] J. Sagiv, “Organized Monolayers by Adsorption I Formation and Structure of Oleophobic Mixed Monolayers on Solid Surfaces”, J. Am. Chem. Soc. 1980, 102, 92.
    連結:
  59. [77] 蘇敬文,“功能性硫醇分子在金(111)電極上的自組裝行為及對電鍍銅的影響”,國立中興大學化學工程學系碩士論文,民國 98 年。
    連結:
  60. [78] 黃志瑋,“介電層表面修飾對有機蒸鍍薄膜形貌與其場效電晶體性能影響研究”,國立中央大學化學系碩士論文,民國97年。
    連結:
  61. [79] E. Ouellet, C. W. T. Yang, T. Lin, L. L. Yang, E.T. Lagally, “Novel Carboxyl-Amine Bonding Methods for Poly(dimethylsiloxane)-Based Devices”, Langmuir 2010, 26, 11609.
    連結:
  62. [81] P. C. Andricacos, C. Uzoh, J. O. Dukovic, J. horkans, H. Deligianni, Damascene, “Copper Electroplating for Chip Interconnections”, IBM J. Res. Develop. 1998, 42, 567.
    連結:
  63. [89] N. J. Harrick, “Internal Reflection Spectroscopy”, Wiley, New York 1967.
    連結:
  64. [90] 黃上恩,“化學方法製備鎳奈米顆粒即無鈀中性無電鍍銅配方於軟性聚亞醯胺基板之金屬化研究”, 國立中興大學化學工程學系碩士論文,民國 98 年。
    連結:
  65. [93] 廖國良,“化學添加劑對於化學方法製備同奈米顆粒及銅薄膜於聚亞醯胺上之特性研究”,國立中興大學化學工程學系碩士論文,民國 97 年。
    連結:
  66. [94] R. H. Guo, S. Q. Jiang, C. W. M. Yuan, and M. C. F. Ng, “Surface Characterisation of Electroless Copper Plated Polyester Fibres”, Surf. Eng., 2009, 25, 101.
    連結:
  67. [95] Y. L. Mikhlin, T. V. Tomashevich, G. L. Pashkov, A. V. Okotrub, I. P. Asanov, and L. N. Mazalov, “Electronic Structure of The Non-equilibrium Iron-deficient Layer of Hexagonal Pyrrhotite”, Appl. Surf. Sci., 1998, 125, 73.
    連結:
  68. [96] 沈紹帄,“填充矽通孔之新穎電鍍銅配方”,國立中興大學化學工程學系碩士論文,民國 98 年。
    連結:
  69. [98] Y. Shacham-Diamand, and Y. Sverdlov, “Electrochemically Deposited Thin Film Alloys for ULSI and MEMS Applications”, J. Microelectronic Eng., 2000, 50, 525.
    連結:
  70. [99] S. Liu, T. Zhu, R. Hu, and Z. Liu, “Evaporation-induced Self-assembly of Gold Nanoparticles into a Highly Organized Two-dimensional Array”, Phys. Chem. Chem. Phys., 2002, 4, 6059.
    連結:
  71. [100] H. W. Kim, J. H. Kim, D. J. Kim, and N. E. Lee, “Adhesion Enhancement of Electroless-Deposited Cu on Flexible Polyimide Substrate Treated by O2 and N2/H2 Inductively Coupled Plasmas”, J. Electrochem. Soc., 2009, 156, D525.
    連結:
  72. [101] T. N. Vorobyova, “Ashesion Interaction Between Electrolessly Deposited Copper Film and Polyimide”, J. Adhesion Sci. Technol., 1997, 11, 167.
    連結:
  73. [102] K. S. Kim, and S. J. Kim, “Influence of Aminized Graphite Nanosheets on the Physical Properties of PMMA-based Nanocomposites”, Bull. Korean Chem. Soc., 2011, 32, 16.
    連結:
  74. [103] J. H. Roh, J. H. Lee, N. I. Kim, H. M. Kang, T. H. Yoon, K. H. Song, “DSC Analysis of Epoxy Molding Compound with Plasma Polymer–Coated Silica Fillers”, J. Appl. Polym. Sci., 2003, 90, 2508.
    連結:
  75. [105] I. F. Amaral, P. L. Granja, and M. A. Barbosa, “Chemical Modification of Chitosan by Phosphorylation:an XPS, FT-IR and SEM Study”, J. Biomater. Sci. Polymer Edn, 2005, 16, 1575.
    連結:
  76. [106] T. I. T. Okpalugo, P. Papakonstantinou, H. Murphy, J. McLaughlin, and N. M. D. Brown, “High Resolution XPS Characterization of Chemical Functionalized MWCNTs and SWCNTs”, Carbon, 2005, 43, 153.
    連結:
  77. [107] A.P. Dementjeva, A. de Graaf, M. C. M. van de Sandenb, K. I. Maslakova, A. V. Naumkina, A. A. Serova, “X-Ray Photoelectron Spectroscopy Reference data for Identification of the C3N4 Phase in Carbon-nitrogen Films”, Dia. Rel. Mater., 2000, 9, 1904.
    連結:
  78. [108] G. Zorn, I. Gotman, E. Y. Gutmanas, R. Adadi, and C. N. Sukenik, “Surface Modification of Ti45Nb Alloy by Immobilization of RGD Peptide Via Self Assembled Monolayer”, J. Mater. Sci., 2007, 18, 1309.
    連結:
  79. [109] J. Leloup, A. Ruaudel-Teixier, A. Barraud, H. Roulet, and G. Dufour, “XPS Study of Copper Sulphides Inserted into a Langmuir-Blodgett Matrix”, Appl. Surf. Sci., 1993, 68, 231.
    連結:
  80. [110] T. Ishida, and N. Choi, “High-Resolution X-ray Photoelectron Spectra of Organosulfur Monolayers on Au(111):S(2p) Spectral Dependence on Molecular Species”, Langmuir, 1999, 15, 6799.
    連結:
  81. [111] T. Y. Dong, H. H. Wu, C. Huang, J. M. Song, I. G. Chen, and T. H. Kao, “Octanethiolated Cu and Cu2O Nanoparticles as Ink to Form Metallic Copper Film”, Appl. Surf. Sci., 2009, 255, 3891.
    連結:
  82. [113] Q. Shu, J. Gao, Z. Nawaz, Y. Liao, D. Wang, and J. Wang, “Synthesis of Biodiesel From Waste Vegetable Oil with Large amounts of Free Fatty Acids using a Carbon-based Solid Acid Catalyst”, Appl. Energy, 2010, 87, 2589.
    連結:
  83. [114] S. Roh, J. Lee, M. Jang, M. Shin, J. Ahn, T. Park, and W. Yi, “Characteristic Features of Stone-Wales Defects in Single-Walled Carbon Nanotube; Adsorption, Dispersion, and Field Emission”, J. Nanomater., 2010, doi:10.1155/2010/398621.
    連結:
  84. [115] S. Seal, S. C. Kuiry, and B. Heinmen, “Effect of Glycine and Hydrogen Peroxide on Chemical–Mechanical Planarization of Copper”, Thin Solid Films, 2003, 423, 243.
    連結:
  85. [116] S. Sahoo, S. Husale, B. Colwill, T. Lu, S. Nayak, and P. M. Ajayan, “Electric Field Directed Self-Assembly of Cuprous Oxide Nanostructures for Photon Sensing”, ACS Nano, 2009, 3, 3935.
    連結:
  86. [117] Y. Sawada, N. Taguchi, and K. Tachibana, “Reduction of Copper Oxide Thin Films with Hydrogen Plasma Generated by a Dielectric-Barrier Glow Discharge”, Jpn. J. Appl. Phys., 1999, 38, 6506.
    連結:
  87. [118] X. Y. Fan, Z. G. Wu, P. X. Yan, B. S. Geng, H. J. Li, and P. J. Zhang, “Fabrication of Well-ordered CuO Nanowire Arrays by Direct Oxidation of Sputter-Deposited Cu3N Film”, Mater. Lett., 2008, 62, 1805.
    連結:
  88. [120] T. Ghodselahi, M. A. Vesaghi, A. Shafiekhani, A. Baghizadeh, and M. Lameii, “XPS Study of the Cu@Cu2O Core-Shell Nanoparticles”, Appl. Surf. Sci., 2008, 255, 2730.
    連結:
  89. [121] R. Sardar A. M. Funston, P. Mulvaney, and R. W. Murray, “Gold Nanoparticles:Past, Present, and Future”, Langmuir, 2009, 25, 13840.
    連結:
  90. [1] 汪信,劉孝桓,“奈米材料化學”,五南圖書,民國95年。
  91. [2] 馬遠榮,“奈米科技”,商周出版,民國91年。
  92. [3] 閻子峰,“奈米催化技術”,五南圖書,民國93年。
  93. [4] http://www.sustainpack.com/nanotechnology.html
  94. [13] 陳東佑,“銅奈米粒子的表面修飾研究”,國立成功大學化學系碩士論文,民國91年。
  95. [20] 陳君怡,“由ISSS-5 2008國際研討會看奈米材料發展趨勢”,材料世界網,「材料最前線」專欄,民國97年。
  96. [38] O. E. Litmanovich, E. A. Eliseeva, I.M. Papisov, “Effect of Molecular Mass of Poly(N-vinylpyrrolidone) on Hydrolysis of Lactam Groups Catalyzed by Copper Nanoparticles”, Polym. Sci. Ser. B 2004, 46, 117.
  97. [43] C. Vázquez- Vázquez, M. Baňobre-López, A. Mitra, M. A. López-Quintela, “Synthesis of Small Atomic Copper Clusters in Microemulsions”, J. Rivas, Langmuir 2009, 25 (14), 8208.
  98. [44] 莊坤儒,“軟性銅箔基板之近況”,電路板會刊,第25期,民國93年。
  99. [45] 金進興,“高密度軟性基板材料與應用”,工業材料雜誌,第175期,民國90年。
  100. [46] M. K. Ghosh, K. L. Mittal, “Polyimide Fundamentals and Application”, Maecel Dekker 1996.
  101. [61] S. Ikeda, K. Akamatsu, H. Nawafune, “Direct Photochemical Formation of Cu Patterns on Surface Modified Polyimide Resin”, J. Mater. Chem. 2001, 11, 2919.
  102. [62] 方景禮, “電鍍添加劑總論”, 傳勝出版社,民國87年。
  103. [63] 逢板哲爾,“化學反應製造金屬薄膜”,表面處理工業雜誌,第三期,民國 85 年。
  104. [64] 張良中,“非導體表面之金屬化”,工業材料,第 112 期,民國 85 年。
  105. [65] 莊萬發,“無電解鍍金-化學鍍金技術”,復漢出版社,民國 85 年。
  106. [67] Goldstein, Rachel, E. Peter, Kukanskis, Grunwald, J. John, “Method and Composition for Continuous Electroless Copper Deposition Using a Hypophosphite Reducing Agent in the Presence of Cobalt or Nickel Ions” U.S. Patent 4 1981 265, 943.
  107. [73] W. C. Bigelow, D. L. Pickett, W.A. Zisman, “Oleophobic Monolayers:I. Films Adsorbed from Solution in Non-Polar Liquids” , J. Coll. Sci. 1946, 1, 513.
  108. [80] IBM Company, “IBM Makes Breakthrough To Copper”, Electronic Buyers’ News 1997.
  109. [82] 羅正忠、張鼎張,“半導體製程技術導論”,台灣培生教育出版股份有限公司,民國 98 年。
  110. [83] P. Garrou, C. Bower, P. Ramm, “Handbook of 3D Integration:Technology and Applications of 3D Integrated Circuits”, John Wiley & Sons Inc. 2008, 1, 4.
  111. [84]http://www.samsung.com/global/business/semiconductor/support/PackageInformation/pkg_technicalinfo_tsv.html
  112. [85] P. Garrou, “How Might 3D ICs Come Together?”, Semiconductor International 2008.
  113. [86] 汪建民,“材料分析”,中國材料科學學會出版,民國87年。
  114. [87] 張銀佑,“穿透式電子顯微鏡TEM”,電子顯微鏡學課程講義,明道大學材料科學與工程學系,民國95年。
  115. [88] Varian Company, “Handbook of UV-Vis Varian Cary 50 Series Spectrophotometer”, Varian Company 2006.
  116. [91] 許樹恩,吳泰伯,“X光繞射原理與材料結構分析”,中國材料科學會,民國85年。
  117. [92] 林麗娟,“X光繞射原理及其應用”,工業材料雜誌,第86期,民國83年。
  118. [97] J. Zhou, Z. Wu, Z. Zhang, W. Liu, and Q. Xue, “Tribological Behavior and Lubricating Mechanism of Cu Nanoparticles in Oil”, Trib. Lett., 2000, 8, 213.
  119. [104] J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, “Handbook of X-ray Photoeletron Spectroscopy”, ULVAC-PHI, Inc., 1995.
  120. [112] P. Acero, J. Cama, C. Ayora, and M. P. Asta, “Chalcopyrite Dissolution Rate Law From pH 1 to 3”, Geologica Acta, 2009, 7, 389.
  121. [119] H. Ishii, T. Koshizawa, H. Kataura, T. Hanyu, H. Takai, K. Mizoguchi, K. Kume, I. Shiozaki, and S. Yamaguchi, “X-Ray Photoemission Spectroscopy of Nd2-xCexCuO4-y and La2-xSrxCuO4”, Jpn. J. Appl. Phys., 1989, 28, L1952.
Times Cited
  1. 鍾宜君(2014)。奈米銅粒子穩定化技術以及其在印刷電路板之應用。中興大學化學工程學系所學位論文。2014。1-151。