Title

以幾何型態指數判識坡地災害特徵

Translated Titles

Identification of the Slopeland Failure Types by Geometric Form Index

Authors

黃佳翎

Key Words

坡地災害 ; 幾何型態指數 ; 崩塌 ; 土石流 ; Slope failure ; Geometric Form Index ; Landslide ; Debris flow

PublicationName

中興大學水土保持學系所學位論文

Volume or Term/Year and Month of Publication

2017年

Academic Degree Category

碩士

Advisor

陳樹群

Content Language

繁體中文

Chinese Abstract

崩塌與土石流行為與地形條件及誘發的降雨息息相關,為了解不同類型的坡地災害特性,以災害的地形特徵來判別崩塌與土石流之不同,來增加影像判識之準確度,及提供往後研究之參考。本研究以台灣本研究以台灣全島2006年至2016年之重大災情案例,以及2009年莫拉克颱風事件在高屏溪流域帶來之災害,分析大規模崩塌、淺層崩塌與土石流事件之地形特徵。結果顯示,利用災害長度、寬度、深度、面積、體積、高程與坡度為判識因子,台灣全島的災例分析中,以面積為最重要之判識因子,而高屏溪流域則以長度為最重要判識因子,此因莫拉克颱風為極端事件降雨,造成的災害多為狹長形。在災害位置與分佈上,可發現災害多發生於山腰處及下邊坡位置,其中大規模崩塌與土石流多發生於山腰處,以崩塌長度與坡面長度為破壞之規模,當面積越大時,規模則越大,但並不會隨著坡度越大而增加,坡度則多集中於30-50度間。 本研究提出坡地災害特徵之幾何型態,以V= B×L×H,其中V為災害體積,B為災害寬度,L為災害長度,H為災害深度,B=α_1 V(β_1 ) ,L=α_2 V(β_2 ) ,H=α_3 V(β_3 ),利用寬度B之指數β_1與係數α_1、長度L之指數β_2與係數α_2以及深度H之指數β_3與係數α_3找出相互之間的關係。結果顯示將指數個別平均後得到,淺層崩塌的災例中,β_1及β_2之值相加約在0.76左右;土石流則是在係數α_2>α_3>α_1,且指數β_1>β_2>β_3;大規模崩塌則是β_3會明顯大於β_1及β_2, β_1及β_2之值相加約在0.55左右。 以坡地變位量與崩塌長度之關係作為修正之條件,結果顯示,台灣災例修正後,利用判別分析之準確率達0.82,高屏溪流域的莫拉克颱風災害修正後,準確率高達0.95,表示本研究提出利用幾何型態指數判識災害特徵之方法能有效的去判識坡地災害。

English Abstract

The landslide and debris flow behavior are closely related to terrain conditions and both induced by rainfall. In order to understand the characteristics are of these slope hazards and to determine the difference between landslides and debris flow, it is imperative to the topographic features of slope failure. The purpose of the study is to improve the accuracy of image recognition on landslides and debris flow and to provide a reference for further analysis. This study use Taiwan and Kaoping River basin as the research area, using major disaster cases from 2006 to 2016. Slope failure brought by Typhoon Morakot in Kaoping River basin and used to analyses the topographic features of deep-seated landslides, shallow landslides and debris flow. The results show that factors may be used for identification including disaster length, width, depth, area, volume, slope and elevation. The area is the most important factor in Taiwan, while in Kaoping River basin the length is the most important factor. In terms of location and distribution, it is found that slope failure occurs on the hillside and toward the toe. Deep-seated landslides and debris flow occured in the hillside. Landslide length divided by the slope length define the scale. An increase in the slope failure area, the scale also increases, but the same is not true with slope in the range 30 - 50 degrees. In this study, the geometric patterns of slopeland disaster are presented with V= BxLxH, where V is disaster volume, B is disaster width, L is disaster length, and H is disaster depth, and these are given by B=α_1 V(β_1 ) , L=α_2 V(β_2 ) , H=α_3 V(β_3 ). The results show that the individual average of indices β_1 and β_2 of the shallow landslide is about 0.76. Debris flow is in the coefficient α_2>α_3>α_1 and the exponential β_1>β_2>β_3. For deep-seated landslide β_3 will be significantly larger than β_1 andβ_2, and when the value of β_1 and β_2 plus is about 0.55. After correction by the relationship between landslide deflection and length of the landslide in Taiwan disaster cases, the accuracy of discriminant analysis was 0.82, and the accuracy rate of Typhoon Morakot in Kaoping River Basin reached 0.95. This study suggests that the method of using geometric form index to identify disaster characteristics can effectively classify the slope failure.

Topic Category 農業暨自然資源學院 > 水土保持學系所
生物農學 > 生物環境與多樣性
Reference
  1. 6. 何岱杰, 張維恕, 林慶偉,劉守恆 (2014). "應用數值地形及光學影像於潛在大規模崩塌地形
    連結:
  2. 8. 吳俊毅, 蔡喬文,陳樹群 (2016). "高屏溪流域崩塌地之地形特徵分析." 中華水土保持學報 47(3): 156-164.
    連結:
  3. 12. 翁愷翎 (2009). 玉峰溪集水區崩塌型態與分佈特性之探討. 水土保持學系, 國立中興大學. 碩士論文.
    連結:
  4. 13. 郭靜苓 (2012). 台灣降雨誘發崩塌之特性分析. 水土保持學系, 國立中興大學. 碩士論文.
    連結:
  5. 14. 陳天健, 李明熹, 曾勛苑, 顏宏諭, 李宗聯,林意修 (2014). "南部板岩地質區地震及豪雨誘發山崩之地形特徵-以隘寮溪流域為例." 航測及遙測學刊 第十八卷(第2期): 第79-92頁.
    連結:
  6. 15. 陳天健, 王振宇,陳柏龍 (2015). "坡面型土石流之地形特徵與判別方法." 中華水土保持學報 46(3): 133-141.
    連結:
  7. 16. 陳天健, 羅元勳, 楊婉君,陳柏龍 (2016). "坡面型土石流地形判釋分析模式." 中華水土保持學報 47(2): 95-103.
    連結:
  8. 17. 陳少謙 (2011). 神木集水區土砂產出對陳有蘭溪河道變遷影響之探討. 水土保持學系 國立中興大學. 碩士論文.
    連結:
  9. 19. 陳晉琪, 謝正倫,林慶偉 (2004). "台灣中部地區土石流災害溪流之地形特性." 中華水土保持學報 35(1): 25 - 34.
    連結:
  10. 20. 陳樹群,吳俊鋐 (2005). "集集地震引發九九峰地區之崩塌型態探討." 中華水土保持學報 36(1): 101-112.
    連結:
  11. 21. 陳樹群,吳俊鋐 (2009). "高雄縣小林村獻肚山巨型深層崩塌引致之地形變遷特性." 中華水土保持學報 40(4): 359-376.
    連結:
  12. 22. 陳樹群, 翁愷翎,吳俊鋐 (2010). "玉峰溪集水區崩塌特性與崩塌體積之探討." 中華水土保持學報 41(3): 217-229.
    連結:
  13. 23. 陳樹群,安軒霈 (2012). "河川型態五層分類法架構與應用." 中華水土保持學報 43(1): 21-40.
    連結:
  14. 24. 陳樹群, 諸予涵,吳俊鋐 (2012). "旗山溪集水區長期降雨特性改變與崩塌分佈關係." 中華水土保持學報 43(4): 293-301.
    連結:
  15. 25. 陳樹群, 陳少謙,吳俊鋐 (2012). "南投縣神木集水區崩塌特性分析." 中華水土保持學報 43(3): 214-226.
    連結:
  16. 26. 陳樹群, 郭靜苓,吳俊鋐 (2013). "西台灣強降雨誘發崩塌規模與區位之特性分析." 中華水土保持學報 44(1): 34-49.
    連結:
  17. 30. 詹勳全, 張嘉琪, 陳樹群, 魏郁軒, 王昭堡,李桃生 (2015). "台灣山區淺層崩塌地特性調查與分析." 中華水土保持學報 46(1): 19-28.
    連結:
  18. 34. 魏倫瑋, 羅佳明, 鄭添耀, 鄭錦桐,冀樹勇 (2012). "深層崩塌之地貌特徵 -以台灣南部地區為例." 中興工程(115): 35-43.
    連結:
  19. 35. Agliardi, F., G. Crosta,A. Zanchi (2001). "Structural constraints on deep-seated slope deformation kinematics." Engineering Geology 59(1–2): 83-102.
    連結:
  20. 37. Borgomeo, E., K. V. Hebditch, A. C. Whittaker,L. Lonergan (2014). "Characterising the spatial distribution, frequency and geomorphic controls on landslide occurrence, Molise, Italy." Geomorphology 226: 148-161.
    連結:
  21. 38. Chigira, M.,H. Yagi (2006). "Geological and geomorphological characteristics of landslides triggered by the 2004 Mid Niigta prefecture earthquake in Japan." Engineering Geology 82(4): 202-221.
    連結:
  22. 39. Fookes, P. G., M. Sweeney, C. N. D. Manby,M. R.P. (1985). "Geological and geotechnical engineering aspects of low-cost roads in mountainous terrain." Engineering Geology(21): 1-152.
    連結:
  23. 40. Giannecchini, R. (2006). "Relationship between rainfall and shallow landslides in the southern Apuan Alps (Italy)." Natural Hazards and Earth System Sciences 6(3): 357-364.
    連結:
  24. 41. Guzzetti, F., F. Ardizzone, M. Cardinali, M. Galli, P. Reichenbach,M. Rossi (2008). "Distribution of landslides in the Upper Tiber River basin, central Italy." Geomorphology 96(1): 105-122.
    連結:
  25. 42. Hutchinson, J. N. ( 1988). General Report: Morphological and geotechnical parameters of landslides in relation to geology and hydrogeology. Proceedings. General Report, Fifth International Symposium on Landslides. 1: 3-35.
    連結:
  26. 44. Lin, C.-W., C.-M. Tseng, Y.-H. Tseng, L.-Y. Fei, Y.-C. Hsieh,P. Tarolli (2013). "Recognition of large scale deep-seated landslides in forest areas of Taiwan using high resolution topography." Journal of Asian Earth Sciences 62: 389-400.
    連結:
  27. 45. Meunier, P., N. Hovius,J. A. Haines (2008). "Topographic site effects and the location of earthquake induced landslides." Earth and Planetary Science Letters 275(3-4): 221-232.
    連結:
  28. 46. Regmi, N. R., J. R. Giardino,J. D. Vitek (2010). "Modeling susceptibility to landslides using the weight of evidence approach: Western Colorado, USA." Geomorphology 115(1): 172-187.
    連結:
  29. 47. Rhodes, D. D. (1977). "The b-f-m Diagram: Graphical Representation and Interpretation of At-AStation Hydraulic Geometry." Amer. J. Sci.(277): 73-96.
    連結:
  30. 48. Santacana, N., B. Baeza, J. Corominas, A. De Paz,J. Marturia (2003). "A GIS-based multivariate statistical analysis for shallow landslide susceptibility mapping in La Pobla de Lillet area (Eastern Pyrenees, Spain)." Natural Hazards 30(3): 281-295.
    連結:
  31. 49. Takahashi, T. (1981). "Debris Flow." Annual Review of Fluid Mechanics 13: 57-77.
    連結:
  32. 51. Weng, M. C., M. H. Wu, S. K. Ning,Y. W. Jou (2011). "Evaluating triggering and causative factors of landslides in Lawnon River Basin, Taiwan." Engineering Geology 123(1-2): 72-82.
    連結:
  33. 52. Wu, C.-H., S.-C. Chen,H.-T. Chou (2011). "Geomorphologic characteristics of catastrophic landslides during typhoon Morakot in the Kaoping Watershed, Taiwan." Engineering Geology 123(1): 13-21.
    連結:
  34. 1. 千木良雅弘 (2011). 大規模崩塌潛感區, 科技圖書股份有限公司.
  35. 2. 中村浩之 (2011). "技術者ソ疑問ズ答りペ地エトベ・崩壊." 総合土木研究所.
  36. 3. 日本獨立行政法人土木研究所 (2009). "深層崩壊ソ発生ソ恐ホソやペ渓流抽出сЯшヤю(案)." 土木研究所資料(4155): 1-20.
  37. 4. 王文能,黃鎮臺 (2000). 崩塌地調查與治理對策. 第二屆全國治山防災研討會論文集: 37-52.
  38. 5. 王文能 (2016). "崩塌的地質特性與防災." 書籍.
  39. 7. 特徵判釋." 航測及遙測學刊 18(2): 109-127.
  40. 9. 吳俊鋐 (2005). 降雨引發邊坡崩塌潛勢評估模式之建構. 水土保持學所, 國立中興大學. 博士論文.
  41. 10. 李三畏 (1984). "台灣崩塌地問題探討." 地工技術(7): 43-49.
  42. 11. 林慶偉, 謝正倫,王文能 (2002). 集集地震對中部災區崩塌與土石流之影響. 臺灣之活動斷層與地震災害研討會: 124-134.
  43. 18. 陳晉琪 (2000). 土石流發生條件及發生機率之研究. 水利及海洋工程學系, 國立成功大學. 博士論文.
  44. 27. 陳聯光, 林聖琪, 林又青, 王俞婷, 林祺岳,陳如琳 (2009). 莫拉克颱風降雨與崩塌分佈特性探討. 國家災害防救科技中心.
  45. 28. 游繁結 (2003). "土壤孔隙特性與滲流線之動態變化對土石流發生之影響(1/2)." 行政院國家科學委員會專題研究計畫.
  46. 29. 費立沅 (2009). "臺灣坡地災害與地質敏感區的關係." 地質 28(1): 16-22.
  47. 31. 詹錢登 (2000). 土石流概論. 臺北.
  48. 32. 鈴木隆介 (2000). "建設技術者ソギバソ地形図読図入門 第3巻 段丘・丘陵・山地." 古今書院.
  49. 33. 劉哲欣, 林聖琪, 吳亭燁,陳聯光 (2011). 大規模崩塌災害調查方法探討. 地工技術.
  50. 36. Agliardi, F. (2012). "Slow, deep-seated rock slope deformation (DSGSD)." Czech Geological Survey.
  51. 43. Leopold, L. B.,T. Maddock (1953). "The Hydraulic Geometry of Stream Channels and Some Physiographic Implications." GEOLOGICAL SURVEY PROFESSIONAL PAPER: 252.
  52. 50. Varnes (1978). "Slope movement types and processes.In: Landslides, analysis and control." Transportation Res. Board Nat.Ac.Sci. Washington Special Report(176): 11-13.