Title

金屬奈米粒子表面催化反應之理論計算研究

Translated Titles

Quantum chemical calculations on mechanism of catalytic reactions on surface of metallic nanoparticles

DOI

10.6845/NCHU.2013.00737

Authors

吳昇珂

Key Words

奈米粒子 ; 合金 ; 催化 ; 水煤氣轉換 ; nanoparticle ; core-shell ; catalyst ; water-gas-shift

PublicationName

中興大學化學系所學位論文

Volume or Term/Year and Month of Publication

2013年

Academic Degree Category

碩士

Advisor

李豐穎

Content Language

英文

Chinese Abstract

我們使用密度泛函理論來研究在core-shell Co6@Au32奈米合金粒子催化水煤氣轉移反應,包括:產物的結構、吸附能並利用NEB(nudged elastic band)方法計算水煤氣轉移反應之位能圖。計算結果顯示,在經由Co6@Au32奈米合金粒子催化之下水煤氣轉移反應中,兩個氫分子的分解反應中的活化能都較Au38純金奈米粒子催化之下低;並且在Co6@Au32奈米合金粒子上,水煤氣轉移反應中的反應物種吸附能較Au38純金奈米粒子穩定。為了瞭解Co6@Au32奈米合金粒子的增效效應以及催化效能,我們利用LDOS (local density of states)來分析各吸附物以及吸附體上之間的作用力以及其分子結構。

English Abstract

We studied the mechanism of the water-gas shift reaction (WGSR, CO + H2O → CO2 + H2) catalyzed by Co6@Au32 core-shell nanoalloy using density-functional theory (DFT) calculations to investigate the bimetallic effects on the catalytic activation. The molecular structures and adsorbate/substrate interaction energies were predicted along with the potential energy surface constructed using the nudged elastic band (NEB) method. Our results indicate the energetic barriers of the two hydrogen dissociation reactions are lower on the core-shell nanoalloy than those on Au38. Furthermore all the related chemical species of WGSR can adsorb stably on Co6@Au32 to allow the reactions to take place under ambient pressure. To gain insights into the synergy effect in the catalytic activity of the Co6@Au32 nanoalloys, the nature of interaction between adsorbate and substrate is also analyzed by the detailed electronic local density of states (LDOS) as well as their molecular structure.

Topic Category 基礎與應用科學 > 化學
理學院 > 化學系所
Reference
  1. Chapter 1
    連結:
  2. 3. Hohenberg, P.; Kohn, W. Phys. Rev. B 1964, 136, 864.
    連結:
  3. 4. Kohn, W.; Sham, L. Phys. Rev. A 1965, 140, 1133.
    連結:
  4. 8. Ceperley, D. M.; Alder, B. J., Phys. Rev. Lett. 1980, 45, 566-569.
    連結:
  5. 10. Perdew, J. P.; Wang, Y., Phys. Rev. B 1992, 45, 13244-13249.
    連結:
  6. 12. Phillips, J. C., Phys. Rev. 1958, 112, 685-695.
    連結:
  7. 13. Phillips, J. C.; Kleinman, L., Phys. Rev. 1959, 116, 287-294.
    連結:
  8. 1. Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N., Chem. Lett. 1987, 16, 405-408.
    連結:
  9. 2. Haruta, M.; Date, M., Appl. Catal. A: Gen 2001, 222, 427-437.
    連結:
  10. 3. Hutchings, G. J., Catal. Today 2008, 138, 9-14.
    連結:
  11. 5. Haruta, M., Catal. Today 1997, 36, 153-166.
    連結:
  12. 6. Haruta, M., Nature 2005, 437, 1098-1099.
    連結:
  13. 7. Roldan, A.; Gonzalez, S.; Ricart, J. M.; Illas, F., ChemPhysChem 2009, 10, 348-351.
    連結:
  14. 8. Turner, M.; Golovko, V. B.; Vaughan, O. P. H.; Abdulkin, P.; Berenguer-Murcia, A.; Tikhov, M. S.; Johnson, B. F. G.; Lambert, R. M., Nature 2008, 454, 981-983.
    連結:
  15. 12. Keane, M. A.; Gomez-Quero, S.; Cardenas-Lizana, F.; Shen, W., ChemCatChem 2009, 1, 270-278.
    連結:
  16. 21. Ferrando, R.; Jellinek, J.; Johnston, R. L., Chem. Rev. 2008, 108, 845-910.
    連結:
  17. 25. Song, C., Catal. Today 2002, 77, 17-49.
    連結:
  18. 27. Liu, P.; Rodriguez, J. A., J. Chem Phys. 2007, 126, 164705-8.
    連結:
  19. 28. Ruettinger, W.; Ilinich, O.; Farrauto, R. J., J. Power Sources 2003, 118, 61-65.
    連結:
  20. 29. Rodriguez, J. A.; Liu, P.; Hrbek, J.; Evans, J.; Perez, M., Angew. Chem. Int. Ed. 2007, 46, 1329-1332.
    連結:
  21. 33. Choi, Y.; Stenger, H. G., Appl. Catal. B: Environ.¬ 2002, 38, 259-269.
    連結:
  22. 36. Ma, W.; Chen, F., Theor. Chem. Acc. 2012, 132, 1-6.
    連結:
  23. 37. Li, H.-J.; Ho, J.-J., J. Phys. Chem. C 2012, 116, 13196-13201.
    連結:
  24. 40. Hohenberg, P.; Kohn, W., Phys. Rev. 1964, 136, B864-B871.
    連結:
  25. 41. Kresse, G.; Hafner, J., Phys. Rev. B 1993, 47, 558-561.
    連結:
  26. 42. Kresse, G.; Hafner, J., Phys. Rev. B 1994, 49, 14251-14269.
    連結:
  27. 43. Kresse, G.; Hafner, J., J. Phys.: Condens. Matter 1994, 6, 8245.
    連結:
  28. 44. Kresse, G.; Furthmuller, J., Phys. Rev. B 1996, 54, 11169-11186.
    連結:
  29. 45. Kresse, G.; Furthmuller, J., Comp. Mater. Sci. 1996, 6, 15-50.
    連結:
  30. 47. Perdew, J. P.; Wang, Y., Phys. Rev. B 1992, 45, 13244-13249.
    連結:
  31. 48. Bader, R., Atoms in Molecules: A Quantum Theory (International Series of Monographs on Chemistry). Oxford University Press, USA: 1994.
    連結:
  32. 52. Henkelman, G.; Arnaldsson, A.; Jonsson, H., Comp. Mater. Sci. 2006, 36, 354-360.
    連結:
  33. 53. Gershinsky, G.; Pollak, E., J. Chem Phys. 1998, 108, 2756-2764.
    連結:
  34. 56. Lide, D., CRC Handbook of Chemistry and Physics, 88th Edition (CRC Handbook of Chemistry & Physics). CRC Press: 2007.
    連結:
  35. 57. Liu, P.; Rodriguez, J. A., J. Chem. Phys. 2007, 126, 164705.
    連結:
  36. 58. Rodriguez, J. A. L., P.; Hrbek, J.; Evans, J.; Perez, M., Angew. Chem. Int. Ed. 2007, 46, 1329.
    連結:
  37. 59. Hammer, B.; Norskov, J. K., Theoretical surface science and catalysis—calculations and concepts. In Advances in Catalysis, Bruce C. Gates, H. K., Ed. Academic Press: 2000; Vol. Volume 45, pp 71-129.
    連結:
  38. 1. Ashcroft, N. W.; Mermin N. D. Solid State Physics (Saunders College, Philadelphia, 1976), International edn
  39. 2. (a) Dreizler, R. M.; Gross, E. K. U. Density Functional Theory (Springer, 1990). (b) Parr, R. G.; Yang, W. Density-functional Theory of Atoms and Molecules (Oxford University Press, 1994). (c) Fulde, P. Electron Correlations in Molecules and Solids (Springer, 1995).
  40. 5. (a) Thomas, L. H. Proc. Camb. Phil. Soc. 1927, 23, 542. (b) Fermi, E. Rend. Accad. Naz. Lincei. 1927, 6, 602. (c) Fermi, E. Z. Phys. 1928 , 48, 73.
  41. 6. (a) Teller, E. Rev. Mod. Phys. 1962, 34, 627. (b) Lieb, E. H. Rev. Mod. Phys. 1981, 53 (4), 603.
  42. 7. (a) Wang, L. W. Phys. Rev. B 1992, 45 (23), 13196. (b) Pearson, M. J. Phys.: Condens. Matter 1993, 5, 3221. (c) Perrot, F. J. Phys.: Condens. Matter 1994, 6, 431. (d) Smargiassi, E. Phys. Rev. B 1994, 49 (8), 5220. (e) Foley, M. Phys. Rev. B 1996, 53 (16), 10589.
  43. 9. St.-Amant, A.; Cornell, W. D.; Kollman, P. A.; Halgren, T. A., J. Comput. Chem. 1995, 16, 1483-1506.
  44. 11. Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C., Phys. Rev. B 1992, 46, 6671-6687.
  45. Chapter 2
  46. 4. Juliusa, M.; Robertsa, S.; Fletchera, J. Q., Gold Bull. 2010, 43, 298-306.
  47. 9. Valden, M.; Lai, X.; Goodman, D. W., Science 1998, 281, 1647-1650.
  48. 10. Venugopal, A.; Aluha, J.; Scurrell, M., Catal. Lett. 2003, 90, 1-6.
  49. 11. Yuan, G.; Lopez, J. L.; Louis, C.; Delannoy, L.; Keane, M. A., Catal. Commun. 2005, 6, 555-562.
  50. 13. Venezia, A. M.; Liotta, L. F.; Pantaleo, G.; La Parola, V.; Deganello, G.; Beck, A.; Koppany, Z.; Frey, K.; Horvath, D.; Guczi, L., Appl. Catal. A: Gen 2003, 251, 359-368.
  51. 14. Bonarowska, M.; Burda, B.; Juszczyk, W.; Pielaszek, J.; Kowalczyk, Z.; Karpiński, Z., Appl. Catal. B: Environ.¬ 2001, 35, 13-20.
  52. 15. Nutt, M. O.; Heck, K. N.; Alvarez, P.; Wong, M. S., Appl. Catal. B: Environ.¬ 2006, 69, 115-125.
  53. 16. Hurtado-Juan, M. a.-A.; Yeung, C. M. Y.; Tsang, S. C., Catal. Commun. 2008, 9, 1551-1557.
  54. 17. Yu, Q.; Chen, W.; Li, Y.; Jin, M.; Suo, Z., Catal. Today 2010, 158, 324-328.
  55. 18. Suo, Z.; Ma, C.; Jin, M.; He, T.; An, L., Catal. Commun. 2008, 9, 2187-2190.
  56. 19. Suo, Z.; Lv, A.; Lv, H.; Jin, M.; He, T., Catal. Commun. 2009, 10, 1174-1177.
  57. 20. Cağlayan, B. S.; Aksoylu, A. E., Catal. Commun. 2011, 12, 1206-1211.
  58. 22. Schmid, G.; Lehnert, A.; Malm, J.-O.; Bovin, J.-O., Angew. Chem. Int. Ed. 1991, 30, 874-876.
  59. 23. Lee, W.-r.; Kim, M. G.; Choi, J.-r.; Park, J.-I.; Ko, S. J.; Oh, S. J.; Cheon, J., J. Am. Chem. Soc. 2005, 127, 16090-16097.
  60. 24. Liu, Y.; Fu, Q.; Stephanopoulos, M. F., Catal. Today 2004, 93–95, 241-246.
  61. 26. Suh, D. J.; Kwak, C.; Kim, J.-H.; Kwon, S. M.; Park, T.-J., J. Power Sources 2005, 142, 70-74.
  62. 30. Koryabkina, N. A.; Phatak, A. A.; Ruettinger, W. F.; Farrauto, R. J.; Ribeiro, F. H., J. Catal. 2003, 217, 233-239.
  63. 31. Geissler, K.; Newson, E.; Vogel, F.; Truong, T.-B.; Hottinger, P.; Wokaun, A., PCCP 2001, 3, 289-293.
  64. 32. Cortright, R. D.; Davda, R. R.; Dumesic, J. A., Nature 2002, 418, 964-967.
  65. 34. Lin, R.-J.; Chen, H.-L.; Ju, S.-P.; Li, F.-Y.; Chen, H.-T., J. Phys. Chem. C 2011, 116, 336-342.
  66. 35. Chen, H.-L.; Su, C.-H.; Chen, H.-T., Chem. Phys. Lett. 2012, 536, 100-103.
  67. 38. Huang, S.-C.; Lin, C.-H.; Wang, J. H., J. Phys. Chem. C 2010, 114, 9826-9834.
  68. 39. Bao, Y.; Calderon, H.; Krishnan, K. M., J. Phys. Chem. C 2007, 111, 1941-1944.
  69. 46. Perdew, J. P.; Burke, K.; Ernzerhof, M., Phys. Rev. Lett. 1996, 77, 3865-3868.
  70. 49. Bader, R. F. W.; Beddall, P. M., J. Chem Phys. 1972, 56, 3320-3329.
  71. 50. Henkelman, G.; Uberuaga, B. P.; Jonsson, H., J. Chem Phys. 2000, 113, 9901-9904.
  72. 51. Mills, G.; Jonsson, H.; Schenter, G. K., Surf. Sci. 1995, 324, 305-337.
  73. 54. Garzon, I. L.; Michaelian, K.; Beltran, M. R.; Posada-Amarillas, A.; Ordejon, P.; Artacho, E.; Sanchez-Portal, D.; Soler, J. M., Phys. Rev. Lett. 1998, 81, 1600-1603.
  74. 55. Rodriguez-Lopez, J. L.; Aguilera-Granja, F.; Michaelian, K.; Vega, A., Phys. Rev. B 2003, 67, 174413.