Title

以風險評估篩選集水區土砂災害熱點及韌性提升之研究

Translated Titles

Screening the Hotspots of Sediment Disaster in a Watershed and their Resilience Enhancement Using Risk Analysis

Authors

鄭燕儒

Key Words

韌性 ; 風險評估 ; 土砂災害 ; Resilience ; Risk Assessment ; Derived Disaster

PublicationName

中興大學水土保持學系所學位論文

Volume or Term/Year and Month of Publication

2019年

Academic Degree Category

碩士

Advisor

林昭遠

Content Language

繁體中文

Chinese Abstract

社區韌性乃近年災害管理之重要議題,而現行災害防救體制主要以災中應變為主,有關災前減災之準備仍有改善空間,本研究以風險概念建置韌性評估模式,量化分析保全對象災前之韌性指標,提出欲改善之韌性提升項目。本研究以國家災害防救科技中心所建置之社會脆弱度指標及架構,利用風險概念結合環境指標,綜合社會及環境韌性之分析,建置上游集水區村里土砂災害韌性模式。 本研究先以風險分析篩選樣區土砂災害熱點區位,再檢討熱點區位之韌性值,因環境韌性之提升係屬災後復建工程,而本研究主要探討災前減災項目,故僅針對社會韌性提出強化村里土砂災害韌性之策略,並以效益分析政策之可行性。依據莫拉克風災前之土砂衍生災害風險分析,顯示同富村為土砂災害熱點區位,該村災前之環境韌性為0.50;社會韌性為0.32,在不調整環境韌性狀況下,經檢視同富村可調整之社會韌性包括組織、經濟及社會等構面,主要調整為山坡地超限利用、訪視訪評成績、歲入來源別補助及協助收入、平均每人政府社會福利支出淨額及土石流潛勢溪流保全戶等指標,除超限利用為法定違規使用採全面禁止處理,其他指標若調整至各村里之均值,其改善後之社會韌性可提升至0.96。 本研究所建置之土砂災害韌性模式,可量化分析村里之土砂災害韌性,對韌性指標提出具體改善對策,並綜合評估韌性構面之改善效益,提供政府相關機構對集水區土砂災害防治之參考。

English Abstract

In recent years, Community resilience is a vital issue in disaster management and the current disaster prevention and protection system is mainly based on response during the disaster. There still have room for improvement in pre-disaster mitigation. This study established model based on the concept of risk to quantitatively analyze the resilience of pre-disaster in the protected targets for proposing resilience improvement projects. Social Vulnerability Index (SVI) and its assessment structure adopted from NCDR coupled with environmental indicators were used to analyze the social and environmental resilience for establishing watershed resilience model. Watershed sediment disaster hotspot was screened using risk analysis and then the resilience of the hotspot was examined in this study. Since the improvement of environmental resilience belonging to disaster recovery engineering, it is not the theme of this study which mainly focuses on the pre-disaster mitigation. Only the strategies of strengthening social resilience policy and assessing the feasibility of the policy are explored in the study. Results show that Tongfu Village is a hotspot of sediment disaster according to risk assessment for the pre-event of the typhoon Morakot. Environmental resilience and social resilience of the village at the pre-disaster are 0.50 and 0.32 respectively. Under condition of the same environmental resilience, the social resilience can be improved through the organizational, economic and social aspects: mainly the indices of exceeding utilization, the grade of interview survey , revenues from aid & assistance, government social welfare expenditure, and the protected targets of potential debris flow torrent. Apart from exceeding utilization is a comprehensive prohibition for violation, other indices can be adjusted to the mean value of the villages. Value of social resilience can be improved from 0.32 to 0.96 through the improvement. The model developed in the study can quantitatively analyze the environmental and social resilience of the villages, propose specific improvement measures of the resilience index, evaluate the improvement benefits of aspect resilience, and provide suggestions for relevant government agencies to prevent and control sediment disasters in a watershed.

Topic Category 農業暨自然資源學院 > 水土保持學系所
生物農學 > 生物環境與多樣性
Reference
  1. 一、中文部分
  2. 1.吳杰穎、邵珮君、林文苑、柯于璋、洪鴻智、陳天健(2012),「災害管理學辭典」,台灣五南圖書出版股份有限公司。
  3. 2.李永展(2014),「邁向韌性社會:脆弱度觀點」,經濟前瞻,156:23-26。
  4. 3.陳正改(2010),「天然災害災防問答集」,交通部中央氣象局。
  5. 4.連惠邦(2017),「土砂災害與防治」,五南圖書出版股份有限公司。
  6. 5.江陽聖、陳錕山、梁隆鑫、王志添(2007),「以 SPOT 影像及數值地形模型推估集水區泥砂產量」,航測及遙測學刊,12(4):447-456。
  7. 6.吳振發、詹士樑(2003),「常態化差異植生指數應用於都市綠地品質管制之探討」,台灣土地研究,6(2):17-42。
  8. 7.李建平、郑菲、孙诚(2012),「从气候变化的新视角理解灾害风险、暴露度、脆弱性和恢复力」,气候变化研究进展,8(2):79-83。
  9. 8.林松駿、梁偉立(2018),「衛星影像判釋與現地探查天然林集水區新生崩塌地分布之比較:以 2015 年蘇迪勒颱風誘發崩塌為例」,中華水土保持學報,49(1):1-11。
  10. 9.洪政耀、林雪美(2012),「區域災害系統論坡地災害風險評估」,工程環境會刊,29:21-41。
  11. 10.翁培文、蔡博文(2006),「空間離散指標:舊觀念、新公式」,臺灣地理資訊學刊,4:1-12。
  12. 11.陳禹銘、蘇昭郎、樊國恕(2009),「災害風險評估研究之探討」,災害防救電子報,6(1):41-50。
  13. 12.陳振宇、陳均維、陳國威、林詠喬(2019),「坡地降雨致災熱區警戒模式」,中華水土保持學報,50(1):1-10。
  14. 13.楊明德、黃奕達、黃凱翔、張益祥(2012),「利用崩塌潛勢圖作風險評估之應用: 以陳有蘭溪流域為例」,中華水土保持學報,43(1):1-11。
  15. 14.壽克堅、吳秋靜、許惠瑛 (2010),「以 SPOT 衛星影像探討 1999 集集地震後之崩塌行為」,航測及遙測學刊,15(1):17-28。
  16. 15.謝正倫、陳俞旭 (2010),「二次災害傳遞過程與災區重建之新構想」,中華防災學刊,2(2):109-116。
  17. 16.謝承憲、馮正民、賴怡心(2015),「臺灣西部城際旅客運輸路網脆弱度之評估模式」,都市與計畫,42(4):367-388。
  18. 17.鄭士仁、李正豐、謝惠紅、李如晃(2010),「應用降雨特性評估雨量估計方法及其應用」,農業工程學報,56:2。
  19. 18.盧惠生(1994),「應用二十四小時頻率雨量推估集水區暴雨逕流歷線」,林業試驗所研究報告季刊,9(4):363-373。
  20. 19.王瑞瑄(2012),「運用空間分析方法探討複合性災害之特性-以莫拉克颱風為例」,國立成功大學都市計畫學系碩士論文。
  21. 20.周映承(2017),「以敏感度分析探討大規模崩塌潛勢模式之應用研究」,國立中興大學水土保持學系碩士論文。
  22. 21.林忠明(2013),「因應氣候變遷集水區水源涵養區位之優選與營造」,國立中興大學水土保持學系碩士論文。
  23. 22.林政侑(2012),「應用環境指標劃定集水區地覆類別及熱點區位監測之研究」,國立中興大學水土保持學系碩士論文,1-61。
  24. 23.涂富鈞(2016),「以植生指標劃定集水區崩塌地土砂二次災害潛勢之研究」,國立中興大學水土保持學系碩士論文。
  25. 24.張崑宗、高啟軒(2010),「暴雨型崩塌地自動判釋及特徵分析之研究」,明新科技大學營建工程與管理學系碩士論文。
  26. 25.陳佩榆 (2011),「南投縣信義鄉天然災害管理之研究: 1996-2010」,國立暨南國際大學公共行政與政策學系碩士論文,1-249。
  27. 26.陳駿賢(2003),「遙測及景觀分析技術於崩塌地判釋與變化之研究」,逢甲大學土地管理學系碩士論文。
  28. 27.黃凱昀(2016),「地震災害之人口暴露度時空特性研究—以台南市國華友愛商圈為例」,國立成功大學都市計劃學系碩士論文。
  29. 28.楊礎毓(2013),「整合災害管理之減災與整備於都市規劃之研究」,銘傳大學建築學系碩士論文。
  30. 29.謝有忠(2016),「以多期數值地形資料評估山崩區及河道地形之變遷」,國立臺灣大學理學院地理環境資源研究所博士論文。
  31. 30.楊樹榮、林忠志、鄭錦桐、潘國樑、蔡如君、李正利(2011),「臺灣常用山崩分類系統」,第十四屆大地工程學術研究討論會。
  32. 31.白仁德、林建元(2009),「各層級國土空間規劃與管理之脆弱度與回復力之評估研究---以縣市空間為對象(II)」,行政院國家科學委員會。
  33. 32.經濟部水利署(2012),「濁水溪流域整體治理綱要計畫(101-104年)」。
  34. 33.農委會水土保持局,土石流防災資訊網。檢自:
  35. Https://246.swcb.gov.tw/
  36. 二、外文部分
  37. 1.Adger, W. N. (2000). Social and Ecological Resilience: Are they Related? Progress in Human Geography , 24(3), 347-364.
  38. 2.Bates, R. L., & Jackson, J. A. (1987). Glossary of geology.
  39. 3.Bennett, E. M., Cumming, G. S. & Peterson, G. D. (2005). From Systems Models to Scenarios. Ecosystems, 8, 945-957.
  40. 4.Benouar, D. & Mimi, A. (2001). Improving Emergency Management in Algeria, Global Alliance International Workshop on Disaster Reduction, Reston, VA.
  41. 5.Bruneau, M., Chang, S., Eguchi R., Lee G., O' Rourke, T., Reinhorn, A., Shinozuka M., Tierney, K. & Wallace, W. (2003). A Framework to Quantitatively Assess and Ehance Seismic Resilience of Communities, Earthquake Spectra , 19, 733-752.
  42. 6.Buckle, P., Marsh, G., & Smale, S. J. (2001). Assessing resilience and vulnerability: Principles, strategies and actions. 245.
  43. 7.Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37(1), 35-46.
  44. 8.Cutter, S. L., Barnes, L., Berry, M., Burton, C., Evans, E., Tate, E., & Webb, J. (2008). A place-based model for understanding community resilience to natural disasters. Global Environmental Change, 18(4), 598-606.
  45. 9.Dilley, M., Chen, R. S., Vorogushyn, U., Lerner-Lam, A. L. & Arnold, M. (2005). Natural Disaster Hotspots: A Global Risk Analysis, Washington, D.C.: World Bank.
  46. 10.Elvidge, C. D., & Chen, Z. (1995). Comparison of broad-band and narrow-band red and near-infrared vegetation indices. 54(1), 38-48.
  47. 11.Folke, C., Carpenter, S., Elmqvist, T., Gunderson, L., Holling, C. S., & Walker, B. J. (2002). Resilience and sustainable development: building adaptive capacity in a world of transformations. 31(5), 437-441.
  48. 12.Gunderson, L. H. (2001). Panarchy: understanding transformations in human and natural systems: Island press.
  49. 13.Holling, C. S. (1996). Engineering resilience versus ecological resilience. In: Engineering within ecological constraints(Ed, Schulze, P. C.), pp. 31-44. National Academy Press, Washington D.C.
  50. 14.Holling, C. S., Gunderson, L. & Ludwig, D. (2002). In Quest of a Theory of Adaptive Change. P. 3-24 in: Panarchy: Understanding Transformations in Human and Natural Systems. L.H. Gunderson and C.S. Holling, eds. Island Press, Washington, D.C.
  51. 15.Kron, W. (2003). Flood risk= hazard × exposure × vulnerability. Journal of Lake Sciences, 15, 185-204.
  52. 16.Lin, C.Y., Lin, C.Y., Chompuchan, C. J. G., Natural Hazards, & Risk. (2017). Risk-based models for potential large-scale landslide monitoring and management in Taiwan. 8(2), 1505-1523.
  53. 17.Rose, A. (2004). Defining and Measuring Economic Resilience to Disasters, Disaster Prevention and Management Journal , 13(4), 307-314.
  54. 18.Jensen, J.R. (1996). Introductory Digital Image Processing: A Remote Sensing Prospective.
  55. 19.Strahler, A.N. (1952). Dynamic basis of geomorphology. 63(9), 923-938.
  56. 20.Timmerman, P. (1981). Vulnerability, resilience and the collapse of society, Toronto: University of Toronto, Institute of Environmental Studies, Research Paper.
  57. 21.UNDHA (1992). Internationally agreed glossary of basic terms related to disaster management.
  58. 22.Varnes, D.J. (1978). Slope movement types and processes. In: Special Report 176: Landslides: Analysis and Control (Eds: Schuster, R. L. & Krizek, R. J.). Transportation and Road Research Board, National Academy of Science, Washington D. C., 11-33.
  59. 23.Yasuo, K. (2008). Establishment of Country Based Flood Risk Index: ICHARM, Master Thesis for GRIPPS / ICHARM.